Listing 1 - 10 of 12 | << page >> |
Sort by
|
Choose an application
In this paper, the optimization of sodium vanadate (NVO) as cathode material for zinc-ion batteries (ZIBs) and the improvement of the material's synthesis are reported. Following the convincing capacities obtained for ZIBs using vanadium pentoxide (V₂O₅) as a cathode material, it is tried to further enhance the latter’s electrochemical performances through the insertion of sodium ions into the crystallographic structure of V₂O₅. Acting as stabilizing pillars, the added sodium ions allow NVO cathode material to reach extremely high cycling numbers without a considerable loss of capacity. Special attention is paid to the ecological aspect of the synthesizing method, as ZIBs are considered as being a sustainable and eco-friendly alternative to LIBs.
Zinc-ion battery --- Sodium vanadate --- ZIB --- NVO --- Na0.33V2O5 --- Na1.1V3O7.9 --- triflate --- aqueous electrolyte --- liquid pathway --- stirring --- hydrothermal --- calcination --- thermal treatment --- XRD --- SEM --- specific capacity --- cycle number --- stability --- pillars --- sodium ions --- Physique, chimie, mathématiques & sciences de la terre > Chimie
Choose an application
This book describes recent studies in the development of nanomaterials for various secondary batteries, including Li-ion batteries (LIBs), Li–air batteries, and multivalent aqueous batteries. A simple, low-cost, and scalable synthetic process for the development of nanomaterials is another research topic in this book. The recent studies dedicated by researchers in this book highlight the importance of innovative nanostructures and new functional materials, which can open new opportunities for battery research.
Research & information: general --- Physics --- SnO2 --- self-assembly --- MoS2 --- nanosheets --- lithium-ion battery --- inorganic filler --- gel polymer electrolytes --- TiO2 --- Al2O3 --- SiO2 --- ZrO2 --- CeO2 --- BaTiO3 --- lithium polymer batteries --- Ag --- nanoparticle --- high rate --- zinc metal anode --- copper coating --- alloy interfacial layer --- uniform Zn deposition --- aqueous zinc-ion battery --- Ce-doped LaMnO3 perovskite --- XPS of LaMnO3 --- bifunctional activity --- probe sonication --- carbon-based composite --- transition metal dichalcogenide --- aqueous multivalent metal-ion batteries --- zinc-ion batteries --- magnesium-ion batteries --- aluminum-ion batteries --- aqueous batteries --- electrochemistry --- electrode materials --- ammonium vanadate --- ZnO --- composites --- binary --- ternary --- LIBs --- anode --- Zn metal anode --- aqueous Zn ion batteries --- mildly acidic electrolyte --- dendrite-free --- hydrogen evolution reaction suppression --- InSb --- InSb-C --- PAA binder --- anodes --- Li-ion batteries --- WS2 --- W2C --- hydrothermal method --- carbon nanotubes --- lithium-ion batteries --- SnO2 --- self-assembly --- MoS2 --- nanosheets --- lithium-ion battery --- inorganic filler --- gel polymer electrolytes --- TiO2 --- Al2O3 --- SiO2 --- ZrO2 --- CeO2 --- BaTiO3 --- lithium polymer batteries --- Ag --- nanoparticle --- high rate --- zinc metal anode --- copper coating --- alloy interfacial layer --- uniform Zn deposition --- aqueous zinc-ion battery --- Ce-doped LaMnO3 perovskite --- XPS of LaMnO3 --- bifunctional activity --- probe sonication --- carbon-based composite --- transition metal dichalcogenide --- aqueous multivalent metal-ion batteries --- zinc-ion batteries --- magnesium-ion batteries --- aluminum-ion batteries --- aqueous batteries --- electrochemistry --- electrode materials --- ammonium vanadate --- ZnO --- composites --- binary --- ternary --- LIBs --- anode --- Zn metal anode --- aqueous Zn ion batteries --- mildly acidic electrolyte --- dendrite-free --- hydrogen evolution reaction suppression --- InSb --- InSb-C --- PAA binder --- anodes --- Li-ion batteries --- WS2 --- W2C --- hydrothermal method --- carbon nanotubes --- lithium-ion batteries
Choose an application
This book describes recent studies in the development of nanomaterials for various secondary batteries, including Li-ion batteries (LIBs), Li–air batteries, and multivalent aqueous batteries. A simple, low-cost, and scalable synthetic process for the development of nanomaterials is another research topic in this book. The recent studies dedicated by researchers in this book highlight the importance of innovative nanostructures and new functional materials, which can open new opportunities for battery research.
SnO2 --- self-assembly --- MoS2 --- nanosheets --- lithium-ion battery --- inorganic filler --- gel polymer electrolytes --- TiO2 --- Al2O3 --- SiO2 --- ZrO2 --- CeO2 --- BaTiO3 --- lithium polymer batteries --- Ag --- nanoparticle --- high rate --- zinc metal anode --- copper coating --- alloy interfacial layer --- uniform Zn deposition --- aqueous zinc-ion battery --- Ce-doped LaMnO3 perovskite --- XPS of LaMnO3 --- bifunctional activity --- probe sonication --- carbon-based composite --- transition metal dichalcogenide --- aqueous multivalent metal-ion batteries --- zinc-ion batteries --- magnesium-ion batteries --- aluminum-ion batteries --- aqueous batteries --- electrochemistry --- electrode materials --- ammonium vanadate --- ZnO --- composites --- binary --- ternary --- LIBs --- anode --- Zn metal anode --- aqueous Zn ion batteries --- mildly acidic electrolyte --- dendrite-free --- hydrogen evolution reaction suppression --- InSb --- InSb–C --- PAA binder --- anodes --- Li-ion batteries --- WS2 --- W2C --- hydrothermal method --- carbon nanotubes --- lithium-ion batteries --- n/a --- InSb-C
Choose an application
“Exclusive Feature Papers in Colorants” is a collection of important high-quality papers (original research articles or comprehensive review papers) published in open access. This Special Issue aims to discuss new knowledge or new cutting-edge developments in the colorants research field through selected works, in the hope of making a great contribution to the community. We intend for this issue to be the best forum for disseminating excellent research findings as well as sharing innovative ideas in the field.
Technology: general issues --- molecular rotors --- BODIPY --- viscosity sensors --- dye chemistry --- energy-electron transfer --- azobenzene --- dye --- fluorophore --- colorant --- polymeric blend --- heterocycles --- 2-arylazo-5-aryl-1,3,4-thiadiazoles --- azo-coupling reactions --- crystal structure --- flavone --- solvatochromic probe --- membrane --- zinc ion --- fluorescence --- tridentate ligand --- catalysis --- electrochemistry --- morpholine --- porphyrazine --- titanium(IV) oxide --- PI-88 --- glycosylation --- 1,2-methyl orthoesters --- fluorescent labeling --- AIE --- zinc complex --- inorganic pigments --- orange color --- environment-friendly --- Mn4+ ion --- d–d transition --- molecular rotors --- BODIPY --- viscosity sensors --- dye chemistry --- energy-electron transfer --- azobenzene --- dye --- fluorophore --- colorant --- polymeric blend --- heterocycles --- 2-arylazo-5-aryl-1,3,4-thiadiazoles --- azo-coupling reactions --- crystal structure --- flavone --- solvatochromic probe --- membrane --- zinc ion --- fluorescence --- tridentate ligand --- catalysis --- electrochemistry --- morpholine --- porphyrazine --- titanium(IV) oxide --- PI-88 --- glycosylation --- 1,2-methyl orthoesters --- fluorescent labeling --- AIE --- zinc complex --- inorganic pigments --- orange color --- environment-friendly --- Mn4+ ion --- d–d transition
Choose an application
“Exclusive Feature Papers in Colorants” is a collection of important high-quality papers (original research articles or comprehensive review papers) published in open access. This Special Issue aims to discuss new knowledge or new cutting-edge developments in the colorants research field through selected works, in the hope of making a great contribution to the community. We intend for this issue to be the best forum for disseminating excellent research findings as well as sharing innovative ideas in the field.
Technology: general issues --- molecular rotors --- BODIPY --- viscosity sensors --- dye chemistry --- energy-electron transfer --- azobenzene --- dye --- fluorophore --- colorant --- polymeric blend --- heterocycles --- 2-arylazo-5-aryl-1,3,4-thiadiazoles --- azo-coupling reactions --- crystal structure --- flavone --- solvatochromic probe --- membrane --- zinc ion --- fluorescence --- tridentate ligand --- catalysis --- electrochemistry --- morpholine --- porphyrazine --- titanium(IV) oxide --- PI-88 --- glycosylation --- 1,2-methyl orthoesters --- fluorescent labeling --- AIE --- zinc complex --- inorganic pigments --- orange color --- environment-friendly --- Mn4+ ion --- d–d transition
Choose an application
“Exclusive Feature Papers in Colorants” is a collection of important high-quality papers (original research articles or comprehensive review papers) published in open access. This Special Issue aims to discuss new knowledge or new cutting-edge developments in the colorants research field through selected works, in the hope of making a great contribution to the community. We intend for this issue to be the best forum for disseminating excellent research findings as well as sharing innovative ideas in the field.
molecular rotors --- BODIPY --- viscosity sensors --- dye chemistry --- energy-electron transfer --- azobenzene --- dye --- fluorophore --- colorant --- polymeric blend --- heterocycles --- 2-arylazo-5-aryl-1,3,4-thiadiazoles --- azo-coupling reactions --- crystal structure --- flavone --- solvatochromic probe --- membrane --- zinc ion --- fluorescence --- tridentate ligand --- catalysis --- electrochemistry --- morpholine --- porphyrazine --- titanium(IV) oxide --- PI-88 --- glycosylation --- 1,2-methyl orthoesters --- fluorescent labeling --- AIE --- zinc complex --- inorganic pigments --- orange color --- environment-friendly --- Mn4+ ion --- d–d transition
Choose an application
The rapid growth of the world's population has significantly increased energy consumption and environmental impact. The transition from fossil fuels to sustainable energy sources that is needed for a sustainable future demands more efficient materials and improved technologies, but allows us to tackle this great and necessary challenge. This Special Issue highlights some of the latest energy advances in the field of materials, in particular low-dimensional materials, and nanostructured materials. Various topics related to synthesis and characterization methods, properties, and energy application uses are highlighted.
Research & information: general --- Physics --- peritectic compound Li4(OH)3Br --- phase change materials --- thermal energy storage --- shape stabilized composites --- supporting materials --- oxides --- colloidal lithography --- thin-film photovoltaics --- photonics --- light-trapping --- self-cleaning --- graphene --- triboelectric nanogenerator --- charge trapping layer --- flexible --- stability --- energy harvesting --- solar cells --- parameter extraction --- single diode model --- non-iterative --- sodium borohydride --- hydrolysis --- porous carbon --- Co nanoparticles --- durability --- Ti-MOFs --- amine functionalization --- CO2 capture --- separation --- breakthrough experiment --- carbon nanotube --- plastic --- chemical recycling --- life cycle assessment --- ethernet --- circular economy --- data transmission --- carbon footprint --- BaF2 nanophase --- oxyfluoride nano-glass-ceramics --- Tb3+/Eu3+ energy transfer --- sol-gel chemistry --- nanocellulose --- ionic liquid --- ionogel --- gel polymer electrolyte --- renewable energy storage --- supercapacitors --- Ti2SnC --- M2AX --- powders --- thin films --- STEM --- nanoindentation --- zinc-ion supercapacitor --- three-dimensional vertically aligned graphene --- polydopamine --- highly concentrated salt electrolyte --- mini-jets --- diffuse discharge --- spark discharge --- red sprites --- blue jets --- ghosts --- Atomic Force Microscopy --- Electrochemical Strain Microscopy --- hybrid electrolyte --- Energy Storage --- lithium transport --- lithium distribution --- all-solid-state electrolytes --- diffusion --- ferric ion sensor --- MOF --- finite difference --- composite materials --- Mn3O4-CeO2-rGO --- nanocatalyst --- methanol oxidation --- cyclic voltammetry --- cellulose nanocrystal --- surface functionalization --- conductive electrodes --- energy storage --- peritectic compound Li4(OH)3Br --- phase change materials --- thermal energy storage --- shape stabilized composites --- supporting materials --- oxides --- colloidal lithography --- thin-film photovoltaics --- photonics --- light-trapping --- self-cleaning --- graphene --- triboelectric nanogenerator --- charge trapping layer --- flexible --- stability --- energy harvesting --- solar cells --- parameter extraction --- single diode model --- non-iterative --- sodium borohydride --- hydrolysis --- porous carbon --- Co nanoparticles --- durability --- Ti-MOFs --- amine functionalization --- CO2 capture --- separation --- breakthrough experiment --- carbon nanotube --- plastic --- chemical recycling --- life cycle assessment --- ethernet --- circular economy --- data transmission --- carbon footprint --- BaF2 nanophase --- oxyfluoride nano-glass-ceramics --- Tb3+/Eu3+ energy transfer --- sol-gel chemistry --- nanocellulose --- ionic liquid --- ionogel --- gel polymer electrolyte --- renewable energy storage --- supercapacitors --- Ti2SnC --- M2AX --- powders --- thin films --- STEM --- nanoindentation --- zinc-ion supercapacitor --- three-dimensional vertically aligned graphene --- polydopamine --- highly concentrated salt electrolyte --- mini-jets --- diffuse discharge --- spark discharge --- red sprites --- blue jets --- ghosts --- Atomic Force Microscopy --- Electrochemical Strain Microscopy --- hybrid electrolyte --- Energy Storage --- lithium transport --- lithium distribution --- all-solid-state electrolytes --- diffusion --- ferric ion sensor --- MOF --- finite difference --- composite materials --- Mn3O4-CeO2-rGO --- nanocatalyst --- methanol oxidation --- cyclic voltammetry --- cellulose nanocrystal --- surface functionalization --- conductive electrodes --- energy storage
Choose an application
The rapid growth of the world's population has significantly increased energy consumption and environmental impact. The transition from fossil fuels to sustainable energy sources that is needed for a sustainable future demands more efficient materials and improved technologies, but allows us to tackle this great and necessary challenge. This Special Issue highlights some of the latest energy advances in the field of materials, in particular low-dimensional materials, and nanostructured materials. Various topics related to synthesis and characterization methods, properties, and energy application uses are highlighted.
Research & information: general --- Physics --- peritectic compound Li4(OH)3Br --- phase change materials --- thermal energy storage --- shape stabilized composites --- supporting materials --- oxides --- colloidal lithography --- thin-film photovoltaics --- photonics --- light-trapping --- self-cleaning --- graphene --- triboelectric nanogenerator --- charge trapping layer --- flexible --- stability --- energy harvesting --- solar cells --- parameter extraction --- single diode model --- non-iterative --- sodium borohydride --- hydrolysis --- porous carbon --- Co nanoparticles --- durability --- Ti-MOFs --- amine functionalization --- CO2 capture --- separation --- breakthrough experiment --- carbon nanotube --- plastic --- chemical recycling --- life cycle assessment --- ethernet --- circular economy --- data transmission --- carbon footprint --- BaF2 nanophase --- oxyfluoride nano-glass-ceramics --- Tb3+/Eu3+ energy transfer --- sol–gel chemistry --- nanocellulose --- ionic liquid --- ionogel --- gel polymer electrolyte --- renewable energy storage --- supercapacitors --- Ti2SnC --- M2AX --- powders --- thin films --- STEM --- nanoindentation --- zinc-ion supercapacitor --- three-dimensional vertically aligned graphene --- polydopamine --- highly concentrated salt electrolyte --- mini-jets --- diffuse discharge --- spark discharge --- red sprites --- blue jets --- ghosts --- Atomic Force Microscopy --- Electrochemical Strain Microscopy --- hybrid electrolyte --- Energy Storage --- lithium transport --- lithium distribution --- all-solid-state electrolytes --- diffusion --- ferric ion sensor --- MOF --- finite difference --- composite materials --- Mn3O4-CeO2-rGO --- nanocatalyst --- methanol oxidation --- cyclic voltammetry --- cellulose nanocrystal --- surface functionalization --- conductive electrodes --- energy storage --- n/a --- sol-gel chemistry
Choose an application
The rapid growth of the world's population has significantly increased energy consumption and environmental impact. The transition from fossil fuels to sustainable energy sources that is needed for a sustainable future demands more efficient materials and improved technologies, but allows us to tackle this great and necessary challenge. This Special Issue highlights some of the latest energy advances in the field of materials, in particular low-dimensional materials, and nanostructured materials. Various topics related to synthesis and characterization methods, properties, and energy application uses are highlighted.
peritectic compound Li4(OH)3Br --- phase change materials --- thermal energy storage --- shape stabilized composites --- supporting materials --- oxides --- colloidal lithography --- thin-film photovoltaics --- photonics --- light-trapping --- self-cleaning --- graphene --- triboelectric nanogenerator --- charge trapping layer --- flexible --- stability --- energy harvesting --- solar cells --- parameter extraction --- single diode model --- non-iterative --- sodium borohydride --- hydrolysis --- porous carbon --- Co nanoparticles --- durability --- Ti-MOFs --- amine functionalization --- CO2 capture --- separation --- breakthrough experiment --- carbon nanotube --- plastic --- chemical recycling --- life cycle assessment --- ethernet --- circular economy --- data transmission --- carbon footprint --- BaF2 nanophase --- oxyfluoride nano-glass-ceramics --- Tb3+/Eu3+ energy transfer --- sol–gel chemistry --- nanocellulose --- ionic liquid --- ionogel --- gel polymer electrolyte --- renewable energy storage --- supercapacitors --- Ti2SnC --- M2AX --- powders --- thin films --- STEM --- nanoindentation --- zinc-ion supercapacitor --- three-dimensional vertically aligned graphene --- polydopamine --- highly concentrated salt electrolyte --- mini-jets --- diffuse discharge --- spark discharge --- red sprites --- blue jets --- ghosts --- Atomic Force Microscopy --- Electrochemical Strain Microscopy --- hybrid electrolyte --- Energy Storage --- lithium transport --- lithium distribution --- all-solid-state electrolytes --- diffusion --- ferric ion sensor --- MOF --- finite difference --- composite materials --- Mn3O4-CeO2-rGO --- nanocatalyst --- methanol oxidation --- cyclic voltammetry --- cellulose nanocrystal --- surface functionalization --- conductive electrodes --- energy storage --- n/a --- sol-gel chemistry
Choose an application
Currently, the transition from using the combustion engine to electrified vehicles is a matter of time and drives the demand for compact, high-energy-density rechargeable lithium ion batteries as well as for large stationary batteries to buffer solar and wind energy. The future challenges, e.g., the decarbonization of the CO2-intensive transportation sector, will push the need for such batteries even more. The cost of lithium ion batteries has become competitive in the last few years, and lithium ion batteries are expected to dominate the battery market in the next decade. However, despite remarkable progress, there is still a strong need for improvements in the performance of lithium ion batteries. Further improvements are not only expected in the field of electrochemistry but can also be readily achieved by improved manufacturing methods, diagnostic algorithms, lifetime prediction methods, the implementation of artificial intelligence, and digital twins. Therefore, this Special Issue addresses the progress in battery and energy storage development by covering areas that have been less focused on, such as digitalization, advanced cell production, modeling, and prediction aspects in concordance with progress in new materials and pack design solutions.
Research & information: general --- battery energy storage --- renewable energy --- distribution network --- genetic algorithm --- particle swarm optimization --- electrolyte --- additive --- interface --- pseudocapacitance --- intercalation --- energy storage --- secondary battery --- sodium-ion --- lithium-ion battery --- traction battery --- waterjet-based recycling --- direct recycling --- life cycle assessment --- global warming potential --- electro-thermal model --- smart cell --- intelligent battery --- neural network --- temperature prediction --- DRT by time domain data --- pulse evaluation --- relaxation voltage --- online diagnosis --- degradation mechanisms --- EIS --- lead batteries --- safety concept --- safety battery --- battery monitoring --- electronic battery sensor --- failure modes --- failure distribution --- failure rates --- field battery investigation --- safe supply --- power supply system --- zinc ion batteries --- stationary energy storage --- polymer binder --- solvent --- doctor blade coating --- manganese dioxide --- mixing ratio --- electrochemical impedance spectroscopy --- SEM+EDX --- electrode fabrication --- lithium ion battery --- AC current injection --- bi-directional control --- charger --- lithium-ion battery cell --- volumetric expansion --- mechanical degradation --- state of charge dependency --- cell thickness --- mechanical aging --- non-uniform volume change --- solar photovoltaic energy --- redox flow battery --- residential load --- renewable energy integration --- battery sizing --- battery efficiency --- lithium battery --- temperature dependency --- ether based electrolyte --- insitu deposited lithium-metal electrode --- Coulombic efficiency --- lithium deposition morphology --- Li-ion battery --- thermal runaway --- model --- post-mortem analysis --- ecofriendly electrolyte for lithium-ion batteries --- increased thermal stability of electrolytes --- enhanced electrolyte safety based on high flash point --- tributylacetylcitrate --- acetyltributylcitrate --- electric vehicle battery --- disassembly --- disassembly planner design --- disassembly strategy optimization --- battery management system --- state monitoring --- state-of-charge --- digital twin --- battery model --- Doyle-Fuller-Newman model --- equivalent circuit model --- parameter estimation --- lithium-ion batteries --- temperature estimation --- sensorless temperature measurement --- artificial intelligence --- artificial neural network --- lithium-ion cells --- battery thermal management systems --- CFD simulations --- liquid cooling --- battery energy storage --- renewable energy --- distribution network --- genetic algorithm --- particle swarm optimization --- electrolyte --- additive --- interface --- pseudocapacitance --- intercalation --- energy storage --- secondary battery --- sodium-ion --- lithium-ion battery --- traction battery --- waterjet-based recycling --- direct recycling --- life cycle assessment --- global warming potential --- electro-thermal model --- smart cell --- intelligent battery --- neural network --- temperature prediction --- DRT by time domain data --- pulse evaluation --- relaxation voltage --- online diagnosis --- degradation mechanisms --- EIS --- lead batteries --- safety concept --- safety battery --- battery monitoring --- electronic battery sensor --- failure modes --- failure distribution --- failure rates --- field battery investigation --- safe supply --- power supply system --- zinc ion batteries --- stationary energy storage --- polymer binder --- solvent --- doctor blade coating --- manganese dioxide --- mixing ratio --- electrochemical impedance spectroscopy --- SEM+EDX --- electrode fabrication --- lithium ion battery --- AC current injection --- bi-directional control --- charger --- lithium-ion battery cell --- volumetric expansion --- mechanical degradation --- state of charge dependency --- cell thickness --- mechanical aging --- non-uniform volume change --- solar photovoltaic energy --- redox flow battery --- residential load --- renewable energy integration --- battery sizing --- battery efficiency --- lithium battery --- temperature dependency --- ether based electrolyte --- insitu deposited lithium-metal electrode --- Coulombic efficiency --- lithium deposition morphology --- Li-ion battery --- thermal runaway --- model --- post-mortem analysis --- ecofriendly electrolyte for lithium-ion batteries --- increased thermal stability of electrolytes --- enhanced electrolyte safety based on high flash point --- tributylacetylcitrate --- acetyltributylcitrate --- electric vehicle battery --- disassembly --- disassembly planner design --- disassembly strategy optimization --- battery management system --- state monitoring --- state-of-charge --- digital twin --- battery model --- Doyle-Fuller-Newman model --- equivalent circuit model --- parameter estimation --- lithium-ion batteries --- temperature estimation --- sensorless temperature measurement --- artificial intelligence --- artificial neural network --- lithium-ion cells --- battery thermal management systems --- CFD simulations --- liquid cooling
Listing 1 - 10 of 12 | << page >> |
Sort by
|