Listing 1 - 2 of 2 |
Sort by
|
Choose an application
Dear Colleagues, Synthetic biology is a broad and emerging discipline that capitalizes on recent advances in molecular biology, genetics, protein and RNA engineering and omics technologies. These technologies have transformed our ability to reveal the biology of the cell and the molecular basis of disease.
growth effect --- lysine acetylation --- Escherichia coli --- posttranslational modification --- class II aminoacyl-tRNA synthetase --- amber stop codon suppression --- genetic code expansion --- yeasts --- phosphoseryl-tRNA synthetase --- M. jannaschii orthogonal pair --- gene ontology --- selenocysteine --- genetic firewall --- indirect tRNA aminoacylation --- tRNA editing --- unnatural nucleotides --- reverse polymerization --- RNA metabolism --- genome editing --- tRNA --- tRNASer --- alternative amino acid and nucleotide repertoires --- biocontainment --- fluorescent reporter --- optogenetics --- tRNASep --- GluRS-like --- genetic isolation --- live cell imaging --- alternative core cellular chemistries --- fluorescence-based screen --- phosphoinositide dependent kinase 1 --- synthetic biology --- mistranslation --- tRNA repair --- synthetic life --- CUG-Ser --- unnatural amino acids --- recombinant protein production --- biopharmaceuticals --- protein modification --- functional conservation --- branched-chain amino acids --- alanyl-tRNA synthetase --- release factor 1 --- cyclic peptides --- AspRS --- xenobiology --- DNA delivery --- gene overexpression --- non-canonical amino acids --- ASKA collection --- protein kinase B --- codon bias --- microRNA quantification --- anticodon --- small molecule drug screening --- mRNA display --- genetic tools --- protein engineering --- misacylation --- transfer RNA --- Metschnikowia --- genome synthesis --- expanded genetic code --- yeast two hybrid --- orthogonal central dogma of molecular biology --- microRNA --- genome engineering
Choose an application
Ranaviruses and other viruses within the family Iridoviridae, infect a wide range of ecologically and commercially important ectothermic vertebrates, i.e., bony fish, amphibians, and reptiles, and invertebrates, including agricultural and medical pests and cultured shrimp and crayfish, and are responsible for considerable morbidity and mortality. Understanding the impact of these various agents on diverse host species requires the combined efforts of ecologists, veterinarians, pathologists, comparative immunologists and molecular virologists. Unfortunately, investigators involved in these studies often work in discipline-specific silos that preclude interaction with others whose insights and approaches are required to comprehensively address problems related to ranavirus/iridovirus disease. Our intent here is to breakdown these silos and provide a forum where diverse researchers with a common interest in ranavirus/iridovirus biology can profitably interact. As a colleague once quipped, “Three people make a genius.” We are hoping to do something along those lines by presenting a collection of research articles dealing with issues of anti-viral immunity, identification of a potentially novel viral genus exemplified by erythrocytic necrosis virus, viral inhibition of innate immunity, identification of novel hosts for lymphocystivirus and invertebrate iridoviruses, and modelling studies of ranavirus transmission. Collectively these and others will exemplify the breadth of ongoing studies focused on this virus family.
risk assessment --- n/a --- CQIV --- mathematical models --- amphibian --- iridovirus --- ISDL --- Exopalaemon carinicauda --- viral load --- virus isolation --- European chub --- outbreak --- Unconventional T cell --- early detection --- susceptible species --- viral immune evasion --- DNA virus --- Rana grylio virus --- antibody --- intracellular localization --- Rana grylio virus (RGV) --- British Columbia --- Iridoviridae --- Andrias davidianus ranavirus --- viral infection --- susceptible-infected (SI) models --- yeast two-hybrid (Y2H) --- prevalence --- host-pathogen interactions --- Pacific herring --- Procambarus clarkii --- Bayesian inference --- eDNA --- amphibians --- Artemia spp. --- ranavirosis --- cross-species transmission --- FV3 --- SHIV --- Gryllus bimaculatus --- Pacific salmon --- NF-?B --- cricket --- IIV-6 --- virus binding --- erythrocytic necrosis virus (ENV) --- envelope protein --- iridovirus core proteins --- emerging infection --- host --- Ranavirus --- white head --- Rana temporaria --- Imd --- biosecurity --- antiviral immunity --- Decapodiridovirus --- endemic disease --- Macrobrachium rosenbergii --- co-immunoprecipitation (Co-IP) --- Common frog --- aquatic animals --- virus surveillance --- immunomodulators --- frog virus 3 --- ELISA --- DIV1 --- megalocytivirus --- Lymphocystis disease virus --- bearded dragon --- susceptibility --- protein interaction --- Pogona vitticeps --- viral erythrocytic necrosis (VEN) --- histopathology --- epidemiology --- native-fish conservation --- viral transmission --- Sparus aurata --- immunohistochemistry --- lizard --- disease dynamics --- immunofluorescence --- transmission modelling --- Macrobrachium nipponense --- interferon --- nonclassical MHC --- heparan sulfate --- ranavirus --- Mexico
Listing 1 - 2 of 2 |
Sort by
|