Narrow your search

Library

KU Leuven (4)

FARO (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULB (3)

ULiège (3)

VIVES (3)

More...

Resource type

book (8)


Language

English (8)


Year
From To Submit

2022 (1)

2021 (3)

2020 (3)

1933 (1)

Listing 1 - 8 of 8
Sort by

Book
Code of fair competition for the wood flour industry as submitted on August 30, 1933.
Author:
Year: 1933 Publisher: Washington : United States Government Printing Office,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Environmentally Friendly Polymeric Blends from Renewable Sources
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Materials from renewable resources have attracted increasing attention in recent decades as a result of environmental concerns and due to the depletion of petroleum resources. Polymeric materials from renewable sources have a long history. They were used in ancient times and later accompanied the development of man and civilization. Currently, they are widespread in many areas of life and used, for example, in packaging and in the automotive, construction and pharmaceutical industries.The aim of this Special Issue is to highlight the progress in the manufacturing, characterization, and applications of environmentally friendly polymeric blends from renewable resources. The following aspects were investigated: (i) synthesis of composites based on natural llers; (ii) chemical modi cation of polymers or fillers in order to improve interfacial interactions; (iii) potential applications of the biobased materials.

Keywords

Environmental science, engineering & technology --- lignin --- microspheres --- composites --- polymeric material --- fractionation --- porosity --- radiation grafting --- cotton linter --- phosphate adsorption --- dynamic studies --- bio-polyethylene --- barley straw --- thermomechanical fibers --- interface --- automotive industry --- natural fiber --- polypropylene --- stiffness --- curauá fibers --- microcrystalline cellulose (MCC) --- unsaturated polyester resins --- thermogravimetric analysis (TG) --- mechanical analysis --- dynamic mechanical analysis (DMA) --- LignoBoost® kraft lignin --- potentiometric sensors --- carbon nanotubes --- impedance spectroscopy --- transition metals --- rice nanofibers --- biocomposites --- casting --- mechanical properties --- thermal properties --- rigid polyurethane foams --- lignocellulosic materials --- filler --- chemical treatment --- mechanical characteristics --- pyrolysis process --- Caragana korshinskii biochar --- physicochemical properties --- adsorption characteristics --- nitrate nitrogen --- bio-oil --- polyurethanes --- hemp shives --- bio-filler --- oil impregnation --- sugar beet pulp --- thermal conductivity --- polyurethane composites --- lavender --- kaolinite --- hydroxyapatite --- high-ball milling process --- antibacterial activity --- wood–resin composites --- unsaturated polyester resin --- recycled PET --- wood flour --- renewable resources --- silver nanoparticles --- n/a --- curauá fibers --- wood-resin composites


Book
Environmentally Friendly Polymeric Blends from Renewable Sources
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Materials from renewable resources have attracted increasing attention in recent decades as a result of environmental concerns and due to the depletion of petroleum resources. Polymeric materials from renewable sources have a long history. They were used in ancient times and later accompanied the development of man and civilization. Currently, they are widespread in many areas of life and used, for example, in packaging and in the automotive, construction and pharmaceutical industries.The aim of this Special Issue is to highlight the progress in the manufacturing, characterization, and applications of environmentally friendly polymeric blends from renewable resources. The following aspects were investigated: (i) synthesis of composites based on natural llers; (ii) chemical modi cation of polymers or fillers in order to improve interfacial interactions; (iii) potential applications of the biobased materials.


Book
Environmentally Friendly Polymeric Blends from Renewable Sources
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Materials from renewable resources have attracted increasing attention in recent decades as a result of environmental concerns and due to the depletion of petroleum resources. Polymeric materials from renewable sources have a long history. They were used in ancient times and later accompanied the development of man and civilization. Currently, they are widespread in many areas of life and used, for example, in packaging and in the automotive, construction and pharmaceutical industries.The aim of this Special Issue is to highlight the progress in the manufacturing, characterization, and applications of environmentally friendly polymeric blends from renewable resources. The following aspects were investigated: (i) synthesis of composites based on natural llers; (ii) chemical modi cation of polymers or fillers in order to improve interfacial interactions; (iii) potential applications of the biobased materials.


Book
Rheology and Processing of Polymers
Authors: ---
ISBN: 3036552642 3036552634 Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book covers the latest developments in the field of rheology and polymer processing, highlighting cutting-edge research focusing on the processing of advanced polymers and their composites. It demonstrates that the field of rheology and polymer processing is still gaining increased attention. Presented within are cutting-edge research results and the latest developments in the field of polymer science and engineering, innovations in the processing and characterization of biopolymers and polymer-based products, polymer physics, composites, modeling and simulations, and rheology.

Keywords

Technology: general issues --- Chemical engineering --- polypropylene --- foam-extrusion --- morphology --- foaming --- crystallization kinetics --- side chain liquid crystal polymer --- magnesium hydroxide --- low density polyethylene --- toughness --- processability --- thermoplastic vulcanizates --- compression set --- carbon fiber reinforced polycarbonate composites --- hydrothermal aging --- solid particle erosion --- mechanical property --- micro-/nano-layer coextrusion --- multilayer films --- multiscale structure --- dielectric properties --- thermoforming --- PMSQ–HDPE --- viscoelastic --- experimental --- bubble inflation test --- DMA --- Christensen’s model --- FEM --- biopolymer --- Solanyl®, wood flour --- Lignocel®, lignocellulosic particles --- fuller method --- mechanical properties --- rheological characterization --- viscoelastic spinning --- draw resonance --- kinematic waves --- extensional deformation --- stability indicator --- Giesekus fluid --- polycaprolactone --- nano-hydroxylapatite --- 3D printing --- solution extrusion --- process optimization --- drug release --- recycling --- eco-design --- coextrusion --- multilayers --- micro-/nanolayered polymers --- interfacial phenomena --- multilayer coextrusion --- reactive melt processing --- water-assisted --- radical crosslinking --- peroxide initiators --- biopolymers --- poly(ε-caprolactone) --- rheology --- molecular architecture --- long-chain branching --- polybutylene succinate --- biodegradable --- size-exclusion chromatography --- shear rheology --- extensional rheology --- Cox-Merz rule --- high-viscosity HDPE materials --- extrusion --- modelling and simulation --- spray process --- FEP coating --- scratch behavior --- friction and wear resistance --- circular economy --- n/a --- PMSQ-HDPE --- Christensen's model


Book
Green Technologies : Bridging Conventional Practices and Industry 4.0
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Green technologies can be identified as key components in Industry 4.0. The scope of this book is to address how conventional green technologies can be a part of smart industries by minimizing waste, maximizing productivity, optimizing the supply chain, or by additive manufacturing. This theme focuses on the scope and challenges of integrating current environmental technologies in future industries. This book, “Green Technologies: Bridging Conventional Practices and Industry 4.0”, aims to incorporate and introduce the advances in green technologies to the cyber-based industries. It is hoped that the novel green technologies presented in this book are useful in assisting the global community in working towards fulfilling the Sustainable Development Goals.

Keywords

History of engineering & technology --- wood flour --- oil adsorption --- superhydrophobic --- superoleophilic --- oil-water separation --- sustainable material --- sachet-water plastic waste --- oil palm empty fruit bunch --- TGA-DSC analysis --- activation energy --- physio-thermal analysis --- co-pyrolysis --- eutrophication --- sugarcane bagasse --- adsorption --- harvest --- biodiesel --- reusability --- Calophyllum inophyllum biodiesel --- palm biodiesel --- engine performance --- exhaust emissions --- alternative fuel --- transesterification --- multiple frequency marine controlled-source electromagnetic technique --- Gaussian process --- uncertainty quantification --- computer experiment, electromagnetic profile estimation --- Malaysia --- Municipal Solid Waste (MSW) --- Waste-to-Energy (WTE) --- sustainability --- technical --- economic --- environmental --- social --- optimization --- P-graph --- municipal solid waste conversion technology --- silicon oxycarbide --- thermal conductivity --- floating plants --- SiOC --- silica --- ammonium-based protic ionic liquids --- density --- thermal expansion coefficient --- viscosity --- thermal stability --- CO2 absorption --- rubber-seed shell --- activated carbon --- CO2 adsorption --- isotherms --- kinetics modeling --- milk --- protein --- liquid biphasic flotation --- dairy waste --- recovery --- Cape gooseberry --- color space selection --- color space combination --- food engineering --- anaerobic digestion --- co-digestion --- wastewater --- biogas production --- methane yield, sludge --- sandwich composite fire --- mechanical responses --- moisture content --- balsa core --- mass loss kinetic --- buckling failure --- liquid biphasic system --- aqueous two-phase system --- aqueous biphasic system --- purification --- separation --- biomolecules --- black soldier fly --- yeast --- fermentation --- larvae --- organic waste --- coconut endosperm waste --- n/a --- black soldier fly larvae --- lipid --- substrate --- PC/ABS --- carbon black --- electromagnetic shielding effectiveness --- dissipation of electrostatic discharge --- surface resistivity


Book
Green Technologies : Bridging Conventional Practices and Industry 4.0
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Green technologies can be identified as key components in Industry 4.0. The scope of this book is to address how conventional green technologies can be a part of smart industries by minimizing waste, maximizing productivity, optimizing the supply chain, or by additive manufacturing. This theme focuses on the scope and challenges of integrating current environmental technologies in future industries. This book, “Green Technologies: Bridging Conventional Practices and Industry 4.0”, aims to incorporate and introduce the advances in green technologies to the cyber-based industries. It is hoped that the novel green technologies presented in this book are useful in assisting the global community in working towards fulfilling the Sustainable Development Goals.

Keywords

wood flour --- oil adsorption --- superhydrophobic --- superoleophilic --- oil-water separation --- sustainable material --- sachet-water plastic waste --- oil palm empty fruit bunch --- TGA-DSC analysis --- activation energy --- physio-thermal analysis --- co-pyrolysis --- eutrophication --- sugarcane bagasse --- adsorption --- harvest --- biodiesel --- reusability --- Calophyllum inophyllum biodiesel --- palm biodiesel --- engine performance --- exhaust emissions --- alternative fuel --- transesterification --- multiple frequency marine controlled-source electromagnetic technique --- Gaussian process --- uncertainty quantification --- computer experiment, electromagnetic profile estimation --- Malaysia --- Municipal Solid Waste (MSW) --- Waste-to-Energy (WTE) --- sustainability --- technical --- economic --- environmental --- social --- optimization --- P-graph --- municipal solid waste conversion technology --- silicon oxycarbide --- thermal conductivity --- floating plants --- SiOC --- silica --- ammonium-based protic ionic liquids --- density --- thermal expansion coefficient --- viscosity --- thermal stability --- CO2 absorption --- rubber-seed shell --- activated carbon --- CO2 adsorption --- isotherms --- kinetics modeling --- milk --- protein --- liquid biphasic flotation --- dairy waste --- recovery --- Cape gooseberry --- color space selection --- color space combination --- food engineering --- anaerobic digestion --- co-digestion --- wastewater --- biogas production --- methane yield, sludge --- sandwich composite fire --- mechanical responses --- moisture content --- balsa core --- mass loss kinetic --- buckling failure --- liquid biphasic system --- aqueous two-phase system --- aqueous biphasic system --- purification --- separation --- biomolecules --- black soldier fly --- yeast --- fermentation --- larvae --- organic waste --- coconut endosperm waste --- n/a --- black soldier fly larvae --- lipid --- substrate --- PC/ABS --- carbon black --- electromagnetic shielding effectiveness --- dissipation of electrostatic discharge --- surface resistivity


Book
Green Technologies : Bridging Conventional Practices and Industry 4.0
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Green technologies can be identified as key components in Industry 4.0. The scope of this book is to address how conventional green technologies can be a part of smart industries by minimizing waste, maximizing productivity, optimizing the supply chain, or by additive manufacturing. This theme focuses on the scope and challenges of integrating current environmental technologies in future industries. This book, “Green Technologies: Bridging Conventional Practices and Industry 4.0”, aims to incorporate and introduce the advances in green technologies to the cyber-based industries. It is hoped that the novel green technologies presented in this book are useful in assisting the global community in working towards fulfilling the Sustainable Development Goals.

Keywords

History of engineering & technology --- wood flour --- oil adsorption --- superhydrophobic --- superoleophilic --- oil-water separation --- sustainable material --- sachet-water plastic waste --- oil palm empty fruit bunch --- TGA-DSC analysis --- activation energy --- physio-thermal analysis --- co-pyrolysis --- eutrophication --- sugarcane bagasse --- adsorption --- harvest --- biodiesel --- reusability --- Calophyllum inophyllum biodiesel --- palm biodiesel --- engine performance --- exhaust emissions --- alternative fuel --- transesterification --- multiple frequency marine controlled-source electromagnetic technique --- Gaussian process --- uncertainty quantification --- computer experiment, electromagnetic profile estimation --- Malaysia --- Municipal Solid Waste (MSW) --- Waste-to-Energy (WTE) --- sustainability --- technical --- economic --- environmental --- social --- optimization --- P-graph --- municipal solid waste conversion technology --- silicon oxycarbide --- thermal conductivity --- floating plants --- SiOC --- silica --- ammonium-based protic ionic liquids --- density --- thermal expansion coefficient --- viscosity --- thermal stability --- CO2 absorption --- rubber-seed shell --- activated carbon --- CO2 adsorption --- isotherms --- kinetics modeling --- milk --- protein --- liquid biphasic flotation --- dairy waste --- recovery --- Cape gooseberry --- color space selection --- color space combination --- food engineering --- anaerobic digestion --- co-digestion --- wastewater --- biogas production --- methane yield, sludge --- sandwich composite fire --- mechanical responses --- moisture content --- balsa core --- mass loss kinetic --- buckling failure --- liquid biphasic system --- aqueous two-phase system --- aqueous biphasic system --- purification --- separation --- biomolecules --- black soldier fly --- yeast --- fermentation --- larvae --- organic waste --- coconut endosperm waste --- black soldier fly larvae --- lipid --- substrate --- PC/ABS --- carbon black --- electromagnetic shielding effectiveness --- dissipation of electrostatic discharge --- surface resistivity

Listing 1 - 8 of 8
Sort by