Listing 1 - 7 of 7 |
Sort by
|
Choose an application
Les efforts seront focalisées sur l’utilisation de l’aluminium dans le processus WAAM (Wire Arc Additive Manufacturing / fabrication additive arc-fil) et des aspects pratiques lors du dépôt de matière. Les activités qui feront partie du TFE/stage sont pertinentes car elles cadrent dans : - un projet de recherche sur la modélisation numérique et validation expérimentale du WAAM sur base d’un alliage aluminium prometteur pour le secteur aéronautique (1/1/2019 – 31/12/2020) - le support continu au développement et acquisition d’expertise de ce processus de fabrication additive. Dans ce mémoire il s'agit de faire une étude pratique du WAAM sur l'aluminium.
Choose an application
Additive Manufacturing (AM), more popularly known as 3D printing, is transforming the industry. AM of metal components with virtually no geometric limitations has enabled new product design options and opportunities, increased product performance, shorter cycle time in part production, total cost reduction, shortened lead time, improved material efficiency, more sustainable products and processes, full circularity in the economy, and new revenue streams. This Special Issue of Metals gives an up-to-date account of the state of the art in AM.
Technology: general issues --- additive manufacturing --- support structures --- electron beam melting --- support structure removability --- biological origin hydroxyapatite --- bioactive layers --- cranial mesh implants --- selective laser melting --- 3D printing --- radio-frequency magnetron sputtering --- powder bed fusion --- single crystal --- grain selection --- cavity resonators --- filters --- microwave --- plating --- stereolithography --- thermal expansion --- three-dimensional printing --- directed energy deposition --- EN AW-7075 --- porosity --- ultimate tensile strength --- wire arc additive manufacturing --- WAAM --- microstructure --- magnesium --- mechanical properties --- scanning electron microscopy --- electron backscattered diffraction method --- direct energy deposition --- cold metal transfer --- 5356-aluminum --- temperature distribution --- metal powder bed fusion --- Ti–6Al–4V --- residual stresses --- heat treatments --- electron beam melting (EBM) --- process window --- stainless steel --- 316LN --- powder methods --- additive manufacturing (AM) --- post-processing --- 316L stainless-steel --- electron microscopy --- rapid tooling --- laser-based powder bed fusion (L-PBF) --- production tools --- cold working --- hot working --- injection molding --- n/a --- Ti-6Al-4V
Choose an application
The advent of additive manufacturing (AM) processes applied to the fabrication of structural components creates the need for design methodologies supporting structural optimization approaches that take into account the specific characteristics of the process. While AM processes enable unprecedented geometrical design freedom, which can result in significant reductions of component weight, on the other hand they have implications in the fatigue and fracture strength due to residual stresses and microstructural features. This is linked to stress concentration effects and anisotropy that still warrant further research. This Special Issue of Applied Sciences brings together papers investigating the features of AM processes relevant to the mechanical behavior of AM structural components, particularly, but not exclusively, from the viewpoints of fatigue and fracture behavior. Although the focus of the issue is on AM problems related to fatigue and fracture, articles dealing with other manufacturing processes with related problems are also be included.
History of engineering & technology --- residual stress/strain --- electron beam melting --- diffraction --- Ti-6Al-4V --- electron backscattered diffraction --- X-ray diffraction --- Selective Laser Melting --- Ti6Al4V --- residual stress --- deformation --- preheating --- relative density --- powder degradation --- wire and arc additive manufacturing --- additive manufacturing --- microstructure --- mechanical properties --- applications --- Fe-based amorphous coating --- laser cladding --- property --- titanium --- microstructural modeling --- metal deposition --- finite element method --- dislocation density --- vacancy concentration --- directed energy deposition --- defects --- hardness --- alloy 718 --- hot isostatic pressing --- post-treatment --- Alloy 718 --- surface defects --- encapsulation --- coating --- fatigue crack growth (FCG) --- electron beam melting (EBM) --- hydrogen embrittlement (HE) --- wire arc additive manufacturing --- precipitation hardening --- Al–Zn–Mg–Cu alloys --- microstructure characterisation --- titanium alloy --- Ti55511 --- synchrotron --- XRD --- microscopy --- SLM --- EBM --- EBSD --- Rietveld analysis --- WAAM --- GMAW --- energy input per unit length --- processing strategy --- contact tip to work piece distance --- electrical stickout
Choose an application
Additive Manufacturing (AM), more popularly known as 3D printing, is transforming the industry. AM of metal components with virtually no geometric limitations has enabled new product design options and opportunities, increased product performance, shorter cycle time in part production, total cost reduction, shortened lead time, improved material efficiency, more sustainable products and processes, full circularity in the economy, and new revenue streams. This Special Issue of Metals gives an up-to-date account of the state of the art in AM.
additive manufacturing --- support structures --- electron beam melting --- support structure removability --- biological origin hydroxyapatite --- bioactive layers --- cranial mesh implants --- selective laser melting --- 3D printing --- radio-frequency magnetron sputtering --- powder bed fusion --- single crystal --- grain selection --- cavity resonators --- filters --- microwave --- plating --- stereolithography --- thermal expansion --- three-dimensional printing --- directed energy deposition --- EN AW-7075 --- porosity --- ultimate tensile strength --- wire arc additive manufacturing --- WAAM --- microstructure --- magnesium --- mechanical properties --- scanning electron microscopy --- electron backscattered diffraction method --- direct energy deposition --- cold metal transfer --- 5356-aluminum --- temperature distribution --- metal powder bed fusion --- Ti–6Al–4V --- residual stresses --- heat treatments --- electron beam melting (EBM) --- process window --- stainless steel --- 316LN --- powder methods --- additive manufacturing (AM) --- post-processing --- 316L stainless-steel --- electron microscopy --- rapid tooling --- laser-based powder bed fusion (L-PBF) --- production tools --- cold working --- hot working --- injection molding --- n/a --- Ti-6Al-4V
Choose an application
The advent of additive manufacturing (AM) processes applied to the fabrication of structural components creates the need for design methodologies supporting structural optimization approaches that take into account the specific characteristics of the process. While AM processes enable unprecedented geometrical design freedom, which can result in significant reductions of component weight, on the other hand they have implications in the fatigue and fracture strength due to residual stresses and microstructural features. This is linked to stress concentration effects and anisotropy that still warrant further research. This Special Issue of Applied Sciences brings together papers investigating the features of AM processes relevant to the mechanical behavior of AM structural components, particularly, but not exclusively, from the viewpoints of fatigue and fracture behavior. Although the focus of the issue is on AM problems related to fatigue and fracture, articles dealing with other manufacturing processes with related problems are also be included.
residual stress/strain --- electron beam melting --- diffraction --- Ti-6Al-4V --- electron backscattered diffraction --- X-ray diffraction --- Selective Laser Melting --- Ti6Al4V --- residual stress --- deformation --- preheating --- relative density --- powder degradation --- wire and arc additive manufacturing --- additive manufacturing --- microstructure --- mechanical properties --- applications --- Fe-based amorphous coating --- laser cladding --- property --- titanium --- microstructural modeling --- metal deposition --- finite element method --- dislocation density --- vacancy concentration --- directed energy deposition --- defects --- hardness --- alloy 718 --- hot isostatic pressing --- post-treatment --- Alloy 718 --- surface defects --- encapsulation --- coating --- fatigue crack growth (FCG) --- electron beam melting (EBM) --- hydrogen embrittlement (HE) --- wire arc additive manufacturing --- precipitation hardening --- Al–Zn–Mg–Cu alloys --- microstructure characterisation --- titanium alloy --- Ti55511 --- synchrotron --- XRD --- microscopy --- SLM --- EBM --- EBSD --- Rietveld analysis --- WAAM --- GMAW --- energy input per unit length --- processing strategy --- contact tip to work piece distance --- electrical stickout
Choose an application
The advent of additive manufacturing (AM) processes applied to the fabrication of structural components creates the need for design methodologies supporting structural optimization approaches that take into account the specific characteristics of the process. While AM processes enable unprecedented geometrical design freedom, which can result in significant reductions of component weight, on the other hand they have implications in the fatigue and fracture strength due to residual stresses and microstructural features. This is linked to stress concentration effects and anisotropy that still warrant further research. This Special Issue of Applied Sciences brings together papers investigating the features of AM processes relevant to the mechanical behavior of AM structural components, particularly, but not exclusively, from the viewpoints of fatigue and fracture behavior. Although the focus of the issue is on AM problems related to fatigue and fracture, articles dealing with other manufacturing processes with related problems are also be included.
History of engineering & technology --- residual stress/strain --- electron beam melting --- diffraction --- Ti-6Al-4V --- electron backscattered diffraction --- X-ray diffraction --- Selective Laser Melting --- Ti6Al4V --- residual stress --- deformation --- preheating --- relative density --- powder degradation --- wire and arc additive manufacturing --- additive manufacturing --- microstructure --- mechanical properties --- applications --- Fe-based amorphous coating --- laser cladding --- property --- titanium --- microstructural modeling --- metal deposition --- finite element method --- dislocation density --- vacancy concentration --- directed energy deposition --- defects --- hardness --- alloy 718 --- hot isostatic pressing --- post-treatment --- Alloy 718 --- surface defects --- encapsulation --- coating --- fatigue crack growth (FCG) --- electron beam melting (EBM) --- hydrogen embrittlement (HE) --- wire arc additive manufacturing --- precipitation hardening --- Al–Zn–Mg–Cu alloys --- microstructure characterisation --- titanium alloy --- Ti55511 --- synchrotron --- XRD --- microscopy --- SLM --- EBM --- EBSD --- Rietveld analysis --- WAAM --- GMAW --- energy input per unit length --- processing strategy --- contact tip to work piece distance --- electrical stickout
Choose an application
Additive Manufacturing (AM), more popularly known as 3D printing, is transforming the industry. AM of metal components with virtually no geometric limitations has enabled new product design options and opportunities, increased product performance, shorter cycle time in part production, total cost reduction, shortened lead time, improved material efficiency, more sustainable products and processes, full circularity in the economy, and new revenue streams. This Special Issue of Metals gives an up-to-date account of the state of the art in AM.
Technology: general issues --- additive manufacturing --- support structures --- electron beam melting --- support structure removability --- biological origin hydroxyapatite --- bioactive layers --- cranial mesh implants --- selective laser melting --- 3D printing --- radio-frequency magnetron sputtering --- powder bed fusion --- single crystal --- grain selection --- cavity resonators --- filters --- microwave --- plating --- stereolithography --- thermal expansion --- three-dimensional printing --- directed energy deposition --- EN AW-7075 --- porosity --- ultimate tensile strength --- wire arc additive manufacturing --- WAAM --- microstructure --- magnesium --- mechanical properties --- scanning electron microscopy --- electron backscattered diffraction method --- direct energy deposition --- cold metal transfer --- 5356-aluminum --- temperature distribution --- metal powder bed fusion --- Ti-6Al-4V --- residual stresses --- heat treatments --- electron beam melting (EBM) --- process window --- stainless steel --- 316LN --- powder methods --- additive manufacturing (AM) --- post-processing --- 316L stainless-steel --- electron microscopy --- rapid tooling --- laser-based powder bed fusion (L-PBF) --- production tools --- cold working --- hot working --- injection molding
Listing 1 - 7 of 7 |
Sort by
|