Narrow your search

Library

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

VIVES (2)

FARO (1)

ULB (1)

ULiège (1)

More...

Resource type

book (5)


Language

English (5)


Year
From To Submit

2020 (3)

2015 (2)

Listing 1 - 5 of 5
Sort by

Book
The Second Birth : On the Political Beginnings of Human Existence
Authors: ---
ISBN: 022618515X 9780226185156 9780226038056 Year: 2015 Publisher: Chicago : University of Chicago Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Most scholars link the origin of politics to the formation of human societies, but in this innovative work, Tilo Schabert takes it even further back: to our very births. Drawing on mythical, philosophical, religious, and political thought from around the globe-including America, Europe, the Middle East, and China-The Second Birth proposes a transhistorical and transcultural theory of politics rooted in political cosmology. With impressive erudition, Schabert explores the physical fundamentals of political life, unveiling a profound new insight: our bodies actually teach us politics. Schabert traces different figurations of power inherent to our singular existence, things such as numbers, time, thought, and desire, showing how they render our lives political ones-and, thus, how politics exists in us individually, long before it plays a role in the establishment of societies and institutions. Through these figurations of power, Schabert argues, we learn how to institute our own government within the political forces that already surround us-to create our own world within the one into which we have been born. In a stunning vision of human agency, this book ultimately sketches a political cosmos in which we are all builders, in which we can be at once political and free.


Book
Ecological migrants : the relocation of China's Ewenki reindeer herders
Author:
ISBN: 1782386335 Year: 2015 Publisher: New York ; Oxford, England : Berghahn Books,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Reindeer-herding Ewenki hunters have lived in the forests of China’s Greater Khingan Range for over three hundred years. They have sustained their livelihoods by collecting plants and herbs, hunting animals and herding reindeer. This ethnography details changing Ewenki ways of life brought first by China’s modernization and development policies and more recently by ecological policies that aim to preserve and restore the badly damaged ecologies of western China. Xie reflects on modernization and urbanization in China through this study of ecological migration policies and their effects on relocated Aoluguya Ewenki hunters.


Book
Advances in Hydrologic Forecasts and Water Resources Management
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The impacts of climate change on water resource management, as well as increasingly severe natural disasters over the last decades, have caught global attention. Reliable and accurate hydrological forecasts are essential for efficient water resource management and the mitigation of natural disasters. While the notorious nonlinear hydrological processes make accurate forecasts a very challenging task, it requires advanced techniques to build accurate forecast models and reliable management systems. One of the newest techniques for modeling complex systems is artificial intelligence (AI). AI can replicate the way humans learn and has great capability to efficiently extract crucial information from large amounts of data to solve complex problems. The fourteen research papers published in this Special Issue contribute significantly to the uncertainty assessment of operational hydrologic forecasting under changing environmental conditions and the promotion of water resources management by using the latest advanced techniques, such as AI techniques. The fourteen contributions across four major research areas: (1) machine learning approaches to hydrologic forecasting; (2) uncertainty analysis and assessment on hydrological modeling under changing environments; (3) AI techniques for optimizing multi-objective reservoir operation; (4) adaption strategies of extreme hydrological events for hazard mitigation. The papers published in this issue will not only advance water sciences but also help policymakers to achieve more sustainable and effective water resource management.

Keywords

Research & information: general --- water resources management --- landslide --- dammed lake --- flood risk --- time-varying parameter --- GR4J model --- changing environments --- temporal transferability --- western China --- cascade hydropower reservoirs --- multi-objective optimization --- TOPSIS --- gravitational search algorithm --- opposition learning --- partial mutation --- elastic-ball modification --- Snowmelt Runoff Model --- parameter uncertainty --- data-scarce deglaciating river basin --- climate change impacts --- generalized likelihood uncertainty estimation --- Yangtze River --- cascade reservoirs --- impoundment operation --- GloFAS-Seasonal --- forecast evaluation --- small and medium-scale rivers --- highly urbanized area --- flood control --- whole region perspective --- coupled models --- flood-risk map --- hydrodynamic modelling --- Sequential Gaussian Simulation --- urban stormwater --- probabilistic forecast --- Unscented Kalman Filter --- artificial neural networks --- Three Gorges Reservoir --- Mahalanobis-Taguchi System --- grey entropy method --- signal-to-noise ratio --- degree of balance and approach --- interval number --- multi-objective optimal operation model --- feasible search space --- Pareto-front optimal solution set --- loss–benefit ratio of ecology and power generation --- elasticity coefficient --- empirical mode decomposition --- Hushan reservoir --- data synthesis --- urban hydrological model --- Generalized Likelihood Uncertainty Estimation (GLUE) --- Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) --- uncertainty analysis --- NDVI --- Yarlung Zangbo River --- machine learning model --- random forest --- Internet of Things (IoT) --- regional flood inundation depth --- recurrent nonlinear autoregressive with exogenous inputs (RNARX) --- artificial intelligence --- machine learning --- multi-objective reservoir operation --- hydrologic forecasting --- uncertainty --- risk


Book
Advances in Hydrologic Forecasts and Water Resources Management
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The impacts of climate change on water resource management, as well as increasingly severe natural disasters over the last decades, have caught global attention. Reliable and accurate hydrological forecasts are essential for efficient water resource management and the mitigation of natural disasters. While the notorious nonlinear hydrological processes make accurate forecasts a very challenging task, it requires advanced techniques to build accurate forecast models and reliable management systems. One of the newest techniques for modeling complex systems is artificial intelligence (AI). AI can replicate the way humans learn and has great capability to efficiently extract crucial information from large amounts of data to solve complex problems. The fourteen research papers published in this Special Issue contribute significantly to the uncertainty assessment of operational hydrologic forecasting under changing environmental conditions and the promotion of water resources management by using the latest advanced techniques, such as AI techniques. The fourteen contributions across four major research areas: (1) machine learning approaches to hydrologic forecasting; (2) uncertainty analysis and assessment on hydrological modeling under changing environments; (3) AI techniques for optimizing multi-objective reservoir operation; (4) adaption strategies of extreme hydrological events for hazard mitigation. The papers published in this issue will not only advance water sciences but also help policymakers to achieve more sustainable and effective water resource management.

Keywords

Research & information: general --- water resources management --- landslide --- dammed lake --- flood risk --- time-varying parameter --- GR4J model --- changing environments --- temporal transferability --- western China --- cascade hydropower reservoirs --- multi-objective optimization --- TOPSIS --- gravitational search algorithm --- opposition learning --- partial mutation --- elastic-ball modification --- Snowmelt Runoff Model --- parameter uncertainty --- data-scarce deglaciating river basin --- climate change impacts --- generalized likelihood uncertainty estimation --- Yangtze River --- cascade reservoirs --- impoundment operation --- GloFAS-Seasonal --- forecast evaluation --- small and medium-scale rivers --- highly urbanized area --- flood control --- whole region perspective --- coupled models --- flood-risk map --- hydrodynamic modelling --- Sequential Gaussian Simulation --- urban stormwater --- probabilistic forecast --- Unscented Kalman Filter --- artificial neural networks --- Three Gorges Reservoir --- Mahalanobis-Taguchi System --- grey entropy method --- signal-to-noise ratio --- degree of balance and approach --- interval number --- multi-objective optimal operation model --- feasible search space --- Pareto-front optimal solution set --- loss–benefit ratio of ecology and power generation --- elasticity coefficient --- empirical mode decomposition --- Hushan reservoir --- data synthesis --- urban hydrological model --- Generalized Likelihood Uncertainty Estimation (GLUE) --- Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) --- uncertainty analysis --- NDVI --- Yarlung Zangbo River --- machine learning model --- random forest --- Internet of Things (IoT) --- regional flood inundation depth --- recurrent nonlinear autoregressive with exogenous inputs (RNARX) --- artificial intelligence --- machine learning --- multi-objective reservoir operation --- hydrologic forecasting --- uncertainty --- risk


Book
Advances in Hydrologic Forecasts and Water Resources Management
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The impacts of climate change on water resource management, as well as increasingly severe natural disasters over the last decades, have caught global attention. Reliable and accurate hydrological forecasts are essential for efficient water resource management and the mitigation of natural disasters. While the notorious nonlinear hydrological processes make accurate forecasts a very challenging task, it requires advanced techniques to build accurate forecast models and reliable management systems. One of the newest techniques for modeling complex systems is artificial intelligence (AI). AI can replicate the way humans learn and has great capability to efficiently extract crucial information from large amounts of data to solve complex problems. The fourteen research papers published in this Special Issue contribute significantly to the uncertainty assessment of operational hydrologic forecasting under changing environmental conditions and the promotion of water resources management by using the latest advanced techniques, such as AI techniques. The fourteen contributions across four major research areas: (1) machine learning approaches to hydrologic forecasting; (2) uncertainty analysis and assessment on hydrological modeling under changing environments; (3) AI techniques for optimizing multi-objective reservoir operation; (4) adaption strategies of extreme hydrological events for hazard mitigation. The papers published in this issue will not only advance water sciences but also help policymakers to achieve more sustainable and effective water resource management.

Keywords

water resources management --- landslide --- dammed lake --- flood risk --- time-varying parameter --- GR4J model --- changing environments --- temporal transferability --- western China --- cascade hydropower reservoirs --- multi-objective optimization --- TOPSIS --- gravitational search algorithm --- opposition learning --- partial mutation --- elastic-ball modification --- Snowmelt Runoff Model --- parameter uncertainty --- data-scarce deglaciating river basin --- climate change impacts --- generalized likelihood uncertainty estimation --- Yangtze River --- cascade reservoirs --- impoundment operation --- GloFAS-Seasonal --- forecast evaluation --- small and medium-scale rivers --- highly urbanized area --- flood control --- whole region perspective --- coupled models --- flood-risk map --- hydrodynamic modelling --- Sequential Gaussian Simulation --- urban stormwater --- probabilistic forecast --- Unscented Kalman Filter --- artificial neural networks --- Three Gorges Reservoir --- Mahalanobis-Taguchi System --- grey entropy method --- signal-to-noise ratio --- degree of balance and approach --- interval number --- multi-objective optimal operation model --- feasible search space --- Pareto-front optimal solution set --- loss–benefit ratio of ecology and power generation --- elasticity coefficient --- empirical mode decomposition --- Hushan reservoir --- data synthesis --- urban hydrological model --- Generalized Likelihood Uncertainty Estimation (GLUE) --- Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) --- uncertainty analysis --- NDVI --- Yarlung Zangbo River --- machine learning model --- random forest --- Internet of Things (IoT) --- regional flood inundation depth --- recurrent nonlinear autoregressive with exogenous inputs (RNARX) --- artificial intelligence --- machine learning --- multi-objective reservoir operation --- hydrologic forecasting --- uncertainty --- risk

Listing 1 - 5 of 5
Sort by