Narrow your search

Library

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

VIVES (2)

VUB (2)

UGent (1)


Resource type

book (2)


Language

English (2)


Year
From To Submit

2012 (1)

2005 (1)

Listing 1 - 2 of 2
Sort by
Well-posed, ill-posed, and intermediate problems with applications
Authors: ---
ISBN: 1280868724 9786610868728 1429427116 9047411943 3110195305 9781429427111 9067644323 9789067644327 9781280868726 6610868727 9789047411949 9783110195309 Year: 2005 Publisher: Leiden Boston VSP

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book deals with one of the key problems in applied mathematics, namely the investigation into and providing for solution stability in solving equations with due allowance for inaccuracies in set initial data, parameters and coefficients of a mathematical model for an object under study, instrumental function, initial conditions, etc., and also with allowance for miscalculations, including roundoff errors. Until recently, all problems in mathematics, physics and engineering were divided into two classes: well-posed problems and ill-posed problems. The authors introduce a third class of problems: intermediate ones, which are problems that change their property of being well- or ill-posed on equivalent transformations of governing equations, and also problems that display the property of being either well- or ill-posed depending on the type of the functional space used. The book is divided into two parts: Part one deals with general properties of all three classes of mathematical, physical and engineering problems with approaches to solve them; Part two deals with several stable models for solving inverse ill-posed problems, illustrated with numerical examples.


Book
Hybrid Dynamical Systems
Authors: --- ---
ISBN: 1283439778 9786613439772 1400842638 9781400842636 0691153892 9780691153896 Year: 2012 Publisher: Princeton, NJ

Loading...
Export citation

Choose an application

Bookmark

Abstract

Hybrid dynamical systems exhibit continuous and instantaneous changes, having features of continuous-time and discrete-time dynamical systems. Filled with a wealth of examples to illustrate concepts, this book presents a complete theory of robust asymptotic stability for hybrid dynamical systems that is applicable to the design of hybrid control algorithms--algorithms that feature logic, timers, or combinations of digital and analog components. With the tools of modern mathematical analysis, Hybrid Dynamical Systems unifies and generalizes earlier developments in continuous-time and discrete-time nonlinear systems. It presents hybrid system versions of the necessary and sufficient Lyapunov conditions for asymptotic stability, invariance principles, and approximation techniques, and examines the robustness of asymptotic stability, motivated by the goal of designing robust hybrid control algorithms. This self-contained and classroom-tested book requires standard background in mathematical analysis and differential equations or nonlinear systems. It will interest graduate students in engineering as well as students and researchers in control, computer science, and mathematics.

Keywords

Automatic control. --- Control theory. --- Dynamics. --- Dynamical systems --- Kinetics --- Mathematics --- Mechanics, Analytic --- Force and energy --- Mechanics --- Physics --- Statics --- Dynamics --- Machine theory --- Control engineering --- Control equipment --- Control theory --- Engineering instruments --- Automation --- Programmable controllers --- Hermes solutions. --- Krasovskii regularization. --- Krasovskii solutions. --- Lyapunov conditions. --- Lyapunov functions. --- Lyapunov-like functions. --- asymptotic stability. --- closed sets. --- compact sets. --- conical approximation. --- conical hybrid system. --- continuity properties. --- continuous time. --- continuous-time systems. --- data structure. --- differential equations. --- differential inclusions. --- discrete time. --- discrete-time systems. --- dynamical systems. --- equilibrium points. --- flow map. --- flow set. --- generalized solutions. --- graphical convergence. --- hybrid arcs. --- hybrid control algorithms. --- hybrid dynamical systems. --- hybrid feedback control. --- hybrid models. --- hybrid system. --- hybrid time domains. --- invariance principles. --- jump map. --- jump set. --- modeling frameworks. --- modeling. --- nonlinear systems. --- numerical simulations. --- output function. --- pre-asymptotic stability. --- pre-asymptotically stable sets. --- precompact solutions. --- regularity properties. --- set convergence. --- set-valued analysis. --- set-valued mappings. --- smooth Lyapunov function. --- solution concept. --- stability theory. --- state measurement error. --- state perturbations. --- switching signals. --- switching systems. --- uniform asymptotic stability. --- well-posed hybrid systems. --- well-posed problems. --- well-posedness. --- ω-limit sets. --- Nonlinear control theory.

Listing 1 - 2 of 2
Sort by