Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULiège (3)

VIVES (3)

Vlaams Parlement (3)

More...

Resource type

book (5)


Language

English (5)


Year
From To Submit

2022 (2)

2021 (3)

Listing 1 - 5 of 5
Sort by

Book
UAVs for Vegetation Monitoring
Authors: --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book compiles a set of original and innovative papers included in the Special Issue on UAVs for vegetation monitoring, which proves the wide scope of UAVs in very diverse vegetation applications, both in agricultural and forestry scenarios, ranging from the characterization of relevant vegetation features to the detection of plant or crop stressors. New methods and techniques are developed and applied to diverse vegetation scenarios to meet the main challenge of sustainability.

Keywords

Research & information: general --- UAS --- UAV --- vegetation cover --- multispectral --- land cover --- forest --- Acacia --- Indonesia --- tropics --- vegetation ground cover --- vegetation indices --- agro-environmental measures --- olive groves --- southern Spain --- sUAS --- water stress --- ornamental --- container-grown --- artificial intelligence --- machine learning --- deep learning --- neural network --- visual recognition --- precision agriculture --- canopy cover --- image analysis --- crop mapping --- evapotranspiration (ET) --- GRAPEX --- remote sensing --- Two Source Energy Balance model (TSEB) --- contextual spatial domain/resolution --- data aggregation --- eddy covariance (EC) --- Fusarium wilt --- crop disease --- banana --- multispectral remote sensing --- purple rapeseed leaves --- unmanned aerial vehicle --- U-Net --- plant segmentation --- nitrogen stress --- Glycine max --- RGB --- canopy height --- close remote sensing --- growth model --- curve fitting --- NDVI --- solar zenith angle --- flight altitude --- time of day --- operating parameters --- CNN --- Faster RCNN --- SSD --- Inception v2 --- patch-based CNN --- MobileNet v2 --- detection performance --- inference time --- disease detection --- cotton root rot --- plant-level --- single-plant --- plant-by-plant --- classification --- UAV remote sensing --- crop monitoring --- RGB imagery --- multispectral imagery --- century-old biochar --- semantic segmentation --- random forest --- crop canopy --- multispectral image --- chlorophyll content --- remote sensing technique --- individual plant segmentation --- plant detection --- transfer learning --- maize tassel --- tassel branch number --- convolution neural network --- VGG16 --- plant nitrogen estimation --- vegetation index --- image segmentation --- transpiration --- method comparison --- oil palm --- multiple linear regression --- support vector machine --- artificial neural network --- UAV hyperspectral --- wheat yellow rust --- disease monitoring --- texture --- spatial resolution --- RGB camera --- thermal camera --- drought tolerance --- forage grass --- HSV --- CIELab --- broad-sense heritability --- phenotyping gap --- high throughput field phenotyping --- UAV digital images --- winter wheat biomass --- multiscale textures --- red-edge spectra --- least squares support vector machine --- variable importance --- drone --- hyperspectral --- thermal --- nutrient deficiency --- weed detection --- disease diagnosis --- plant trails --- UAS --- UAV --- vegetation cover --- multispectral --- land cover --- forest --- Acacia --- Indonesia --- tropics --- vegetation ground cover --- vegetation indices --- agro-environmental measures --- olive groves --- southern Spain --- sUAS --- water stress --- ornamental --- container-grown --- artificial intelligence --- machine learning --- deep learning --- neural network --- visual recognition --- precision agriculture --- canopy cover --- image analysis --- crop mapping --- evapotranspiration (ET) --- GRAPEX --- remote sensing --- Two Source Energy Balance model (TSEB) --- contextual spatial domain/resolution --- data aggregation --- eddy covariance (EC) --- Fusarium wilt --- crop disease --- banana --- multispectral remote sensing --- purple rapeseed leaves --- unmanned aerial vehicle --- U-Net --- plant segmentation --- nitrogen stress --- Glycine max --- RGB --- canopy height --- close remote sensing --- growth model --- curve fitting --- NDVI --- solar zenith angle --- flight altitude --- time of day --- operating parameters --- CNN --- Faster RCNN --- SSD --- Inception v2 --- patch-based CNN --- MobileNet v2 --- detection performance --- inference time --- disease detection --- cotton root rot --- plant-level --- single-plant --- plant-by-plant --- classification --- UAV remote sensing --- crop monitoring --- RGB imagery --- multispectral imagery --- century-old biochar --- semantic segmentation --- random forest --- crop canopy --- multispectral image --- chlorophyll content --- remote sensing technique --- individual plant segmentation --- plant detection --- transfer learning --- maize tassel --- tassel branch number --- convolution neural network --- VGG16 --- plant nitrogen estimation --- vegetation index --- image segmentation --- transpiration --- method comparison --- oil palm --- multiple linear regression --- support vector machine --- artificial neural network --- UAV hyperspectral --- wheat yellow rust --- disease monitoring --- texture --- spatial resolution --- RGB camera --- thermal camera --- drought tolerance --- forage grass --- HSV --- CIELab --- broad-sense heritability --- phenotyping gap --- high throughput field phenotyping --- UAV digital images --- winter wheat biomass --- multiscale textures --- red-edge spectra --- least squares support vector machine --- variable importance --- drone --- hyperspectral --- thermal --- nutrient deficiency --- weed detection --- disease diagnosis --- plant trails


Book
UAVs for Vegetation Monitoring
Authors: --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book compiles a set of original and innovative papers included in the Special Issue on UAVs for vegetation monitoring, which proves the wide scope of UAVs in very diverse vegetation applications, both in agricultural and forestry scenarios, ranging from the characterization of relevant vegetation features to the detection of plant or crop stressors. New methods and techniques are developed and applied to diverse vegetation scenarios to meet the main challenge of sustainability.

Keywords

Research & information: general --- UAS --- UAV --- vegetation cover --- multispectral --- land cover --- forest --- Acacia --- Indonesia --- tropics --- vegetation ground cover --- vegetation indices --- agro-environmental measures --- olive groves --- southern Spain --- sUAS --- water stress --- ornamental --- container-grown --- artificial intelligence --- machine learning --- deep learning --- neural network --- visual recognition --- precision agriculture --- canopy cover --- image analysis --- crop mapping --- evapotranspiration (ET) --- GRAPEX --- remote sensing --- Two Source Energy Balance model (TSEB) --- contextual spatial domain/resolution --- data aggregation --- eddy covariance (EC) --- Fusarium wilt --- crop disease --- banana --- multispectral remote sensing --- purple rapeseed leaves --- unmanned aerial vehicle --- U-Net --- plant segmentation --- nitrogen stress --- Glycine max --- RGB --- canopy height --- close remote sensing --- growth model --- curve fitting --- NDVI --- solar zenith angle --- flight altitude --- time of day --- operating parameters --- CNN --- Faster RCNN --- SSD --- Inception v2 --- patch-based CNN --- MobileNet v2 --- detection performance --- inference time --- disease detection --- cotton root rot --- plant-level --- single-plant --- plant-by-plant --- classification --- UAV remote sensing --- crop monitoring --- RGB imagery --- multispectral imagery --- century-old biochar --- semantic segmentation --- random forest --- crop canopy --- multispectral image --- chlorophyll content --- remote sensing technique --- individual plant segmentation --- plant detection --- transfer learning --- maize tassel --- tassel branch number --- convolution neural network --- VGG16 --- plant nitrogen estimation --- vegetation index --- image segmentation --- transpiration --- method comparison --- oil palm --- multiple linear regression --- support vector machine --- artificial neural network --- UAV hyperspectral --- wheat yellow rust --- disease monitoring --- texture --- spatial resolution --- RGB camera --- thermal camera --- drought tolerance --- forage grass --- HSV --- CIELab --- broad-sense heritability --- phenotyping gap --- high throughput field phenotyping --- UAV digital images --- winter wheat biomass --- multiscale textures --- red-edge spectra --- least squares support vector machine --- variable importance --- drone --- hyperspectral --- thermal --- nutrient deficiency --- weed detection --- disease diagnosis --- plant trails


Book
UAVs for Vegetation Monitoring
Authors: --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book compiles a set of original and innovative papers included in the Special Issue on UAVs for vegetation monitoring, which proves the wide scope of UAVs in very diverse vegetation applications, both in agricultural and forestry scenarios, ranging from the characterization of relevant vegetation features to the detection of plant or crop stressors. New methods and techniques are developed and applied to diverse vegetation scenarios to meet the main challenge of sustainability.

Keywords

UAS --- UAV --- vegetation cover --- multispectral --- land cover --- forest --- Acacia --- Indonesia --- tropics --- vegetation ground cover --- vegetation indices --- agro-environmental measures --- olive groves --- southern Spain --- sUAS --- water stress --- ornamental --- container-grown --- artificial intelligence --- machine learning --- deep learning --- neural network --- visual recognition --- precision agriculture --- canopy cover --- image analysis --- crop mapping --- evapotranspiration (ET) --- GRAPEX --- remote sensing --- Two Source Energy Balance model (TSEB) --- contextual spatial domain/resolution --- data aggregation --- eddy covariance (EC) --- Fusarium wilt --- crop disease --- banana --- multispectral remote sensing --- purple rapeseed leaves --- unmanned aerial vehicle --- U-Net --- plant segmentation --- nitrogen stress --- Glycine max --- RGB --- canopy height --- close remote sensing --- growth model --- curve fitting --- NDVI --- solar zenith angle --- flight altitude --- time of day --- operating parameters --- CNN --- Faster RCNN --- SSD --- Inception v2 --- patch-based CNN --- MobileNet v2 --- detection performance --- inference time --- disease detection --- cotton root rot --- plant-level --- single-plant --- plant-by-plant --- classification --- UAV remote sensing --- crop monitoring --- RGB imagery --- multispectral imagery --- century-old biochar --- semantic segmentation --- random forest --- crop canopy --- multispectral image --- chlorophyll content --- remote sensing technique --- individual plant segmentation --- plant detection --- transfer learning --- maize tassel --- tassel branch number --- convolution neural network --- VGG16 --- plant nitrogen estimation --- vegetation index --- image segmentation --- transpiration --- method comparison --- oil palm --- multiple linear regression --- support vector machine --- artificial neural network --- UAV hyperspectral --- wheat yellow rust --- disease monitoring --- texture --- spatial resolution --- RGB camera --- thermal camera --- drought tolerance --- forage grass --- HSV --- CIELab --- broad-sense heritability --- phenotyping gap --- high throughput field phenotyping --- UAV digital images --- winter wheat biomass --- multiscale textures --- red-edge spectra --- least squares support vector machine --- variable importance --- drone --- hyperspectral --- thermal --- nutrient deficiency --- weed detection --- disease diagnosis --- plant trails


Book
Sustainable Agriculture and Advances of Remote Sensing (Volume 1)
Authors: --- --- ---
ISBN: 303655338X 3036553371 Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Agriculture, as the main source of alimentation and the most important economic activity globally, is being affected by the impacts of climate change. To maintain and increase our global food system production, to reduce biodiversity loss and preserve our natural ecosystem, new practices and technologies are required. This book focuses on the latest advances in remote sensing technology and agricultural engineering leading to the sustainable agriculture practices. Earth observation data, in situ and proxy-remote sensing data are the main source of information for monitoring and analyzing agriculture activities. Particular attention is given to earth observation satellites and the Internet of Things for data collection, to multispectral and hyperspectral data analysis using machine learning and deep learning, to WebGIS and the Internet of Things for sharing and publishing the results, among others.

Keywords

Research & information: general --- Geography --- geographic information system (GIS) --- pocket beaches --- coastal management --- Interreg --- climate change --- remote sensing --- drone --- Sicily --- Malta --- Gozo --- Comino --- systematic literature review --- anomaly intrusion detection --- deep learning --- IoT --- resource constraint --- IDS --- evapotranspiration --- penman-monteith equation --- artificial neural network --- canopy conductance --- Ziz basin --- water quality --- satellite image analysis --- modeling approach --- nitrate --- dissolved oxygen --- chlorophyll a --- time series analysis --- environmental monitoring --- water extraction --- modified normalized difference water index (MNDWI) --- machine learning algorithm --- hyperspectral --- proximal sensing --- panicle initiation --- normalized difference vegetation index (NDVI) --- green ring --- internode-elongation --- Sentinel 1 and 2 --- Copernicus Sentinels --- crop classification --- food security --- agricultural monitoring --- data analysis --- SAR --- random forest --- 3D bale wrapping method --- equal bale dimensions --- mathematical model --- minimal film consumption --- optimal bale dimensions --- round bales --- Sentinel-2 --- SVM --- RF --- Boufakrane River watershed --- irrigation requirements --- water resources --- sustainable land use --- agriculture --- invasive plants --- precision agriculture --- rice farming --- site-specific weed management --- nitrogen prediction --- 1D convolution neural networks --- cucumber --- crop yield improvement --- mango leaf --- CCA --- vein pattern --- leaf disease --- cubic SVM --- chlorophyll-a concentration --- transfer learning --- overfitting --- data augmentation --- guava disease --- plant disease detection --- crops diseases --- entropy --- features fusion --- machine learning --- object-based classification --- density estimation --- histogram --- land use --- crop fields --- soil tillage --- data fusion --- multispectral --- sensor --- probe --- temperature profile --- forest roads --- simulation --- autonomous robots --- smart agriculture --- environmental protection --- photogrammetry --- path planning --- internet of things --- modeling --- convolutional neural networks --- machine vision --- computer vision --- modular robot --- selective spraying --- vision-based crop and weed detection --- Faster R-CNN --- YOLOv5 --- band selection --- CNN --- NDVI --- hyperspectral imaging --- crops --- urban flood --- Sentinel-1a --- Synthetic Aperture Radar (SAR) --- 3D Convolutional Neural Network --- multi-temporal data --- land use classification --- GIS --- Coatzacoalcos --- algorithms --- clustering --- pest control --- site-specific --- virtual pests --- rice plant --- weed --- hyperspectral imagery --- sustainable agriculture --- green technologies --- Internet of Things --- natural resources --- sustainable environment --- IoT ecosystem --- hyperspectral remoting sensing --- crop mapping --- image classification --- deep transfer learning --- hyperparameter optimization --- metaheuristic --- soil attribute --- ordinary Kriging --- rational sampling numbers --- spatial heterogeneity --- sampling --- soil pH --- spatial variation --- ordinary kriging --- Land Use/Land Cover --- LISS-III --- Landsat --- Vision Transformer --- Bidirectional long-short term memory --- Google Earth Engine --- Explainable Artificial Intelligence


Book
Sustainable Agriculture and Advances of Remote Sensing (Volume 2)
Authors: --- --- ---
ISBN: 3036553363 3036553355 Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Agriculture, as the main source of alimentation and the most important economic activity globally, is being affected by the impacts of climate change. To maintain and increase our global food system production, to reduce biodiversity loss and preserve our natural ecosystem, new practices and technologies are required. This book focuses on the latest advances in remote sensing technology and agricultural engineering leading to the sustainable agriculture practices. Earth observation data, in situ and proxy-remote sensing data are the main source of information for monitoring and analyzing agriculture activities. Particular attention is given to earth observation satellites and the Internet of Things for data collection, to multispectral and hyperspectral data analysis using machine learning and deep learning, to WebGIS and the Internet of Things for sharing and publication of the results, among others.

Keywords

Research & information: general --- Geography --- geographic information system (GIS) --- pocket beaches --- coastal management --- Interreg --- climate change --- remote sensing --- drone --- Sicily --- Malta --- Gozo --- Comino --- systematic literature review --- anomaly intrusion detection --- deep learning --- IoT --- resource constraint --- IDS --- evapotranspiration --- penman-monteith equation --- artificial neural network --- canopy conductance --- Ziz basin --- water quality --- satellite image analysis --- modeling approach --- nitrate --- dissolved oxygen --- chlorophyll a --- time series analysis --- environmental monitoring --- water extraction --- modified normalized difference water index (MNDWI) --- machine learning algorithm --- hyperspectral --- proximal sensing --- panicle initiation --- normalized difference vegetation index (NDVI) --- green ring --- internode-elongation --- Sentinel 1 and 2 --- Copernicus Sentinels --- crop classification --- food security --- agricultural monitoring --- data analysis --- SAR --- random forest --- 3D bale wrapping method --- equal bale dimensions --- mathematical model --- minimal film consumption --- optimal bale dimensions --- round bales --- Sentinel-2 --- SVM --- RF --- Boufakrane River watershed --- irrigation requirements --- water resources --- sustainable land use --- agriculture --- invasive plants --- precision agriculture --- rice farming --- site-specific weed management --- nitrogen prediction --- 1D convolution neural networks --- cucumber --- crop yield improvement --- mango leaf --- CCA --- vein pattern --- leaf disease --- cubic SVM --- chlorophyll-a concentration --- transfer learning --- overfitting --- data augmentation --- guava disease --- plant disease detection --- crops diseases --- entropy --- features fusion --- machine learning --- object-based classification --- density estimation --- histogram --- land use --- crop fields --- soil tillage --- data fusion --- multispectral --- sensor --- probe --- temperature profile --- forest roads --- simulation --- autonomous robots --- smart agriculture --- environmental protection --- photogrammetry --- path planning --- internet of things --- modeling --- convolutional neural networks --- machine vision --- computer vision --- modular robot --- selective spraying --- vision-based crop and weed detection --- Faster R-CNN --- YOLOv5 --- band selection --- CNN --- NDVI --- hyperspectral imaging --- crops --- urban flood --- Sentinel-1a --- Synthetic Aperture Radar (SAR) --- 3D Convolutional Neural Network --- multi-temporal data --- land use classification --- GIS --- Coatzacoalcos --- algorithms --- clustering --- pest control --- site-specific --- virtual pests --- rice plant --- weed --- hyperspectral imagery --- sustainable agriculture --- green technologies --- Internet of Things --- natural resources --- sustainable environment --- IoT ecosystem --- hyperspectral remoting sensing --- crop mapping --- image classification --- deep transfer learning --- hyperparameter optimization --- metaheuristic --- soil attribute --- ordinary Kriging --- rational sampling numbers --- spatial heterogeneity --- sampling --- soil pH --- spatial variation --- ordinary kriging --- Land Use/Land Cover --- LISS-III --- Landsat --- Vision Transformer --- Bidirectional long-short term memory --- Google Earth Engine --- Explainable Artificial Intelligence

Listing 1 - 5 of 5
Sort by