Listing 1 - 4 of 4 |
Sort by
|
Choose an application
In turbomachinery, the expected new generation of rotors consists of a monobloc bladed disk, called blisk, with better performances and allowing to achieve higher pressure ratios. These structures have a cyclic symmetry and well-defined modes, characterized by a sinusoidal deformation along the circumference of the blisk, which allocate the deformation amplitude uniformly over the blades. In reality, blades have small randomly distributed variations, known as mistuning. In operation, these deviations can cause a localized forced response, leading to unexpected failures due to high cycle fatigue. Moreover, under nominal conditions, the air flow encounters some obstacles, periodically distributed in the turbomachinery, which leads to a periodic pressure variation along the blisk. Due to the rotating structure, the rotor is submitted to a traveling wave excitation of a certain order, whose shape coincides with the eigenmodes of the blisk, then likely to be excited. In addition to this, industrial blisks often have a high spectral density, which makes the identification of individual modes extremely complex with a classical base excitation. To simulate engine order excitation, to perform modal appropriation, and to determine experimentally the mistuning, this work aims to design and implement a test bench that generates standing and traveling wave excitation of the desired order, on a compressor blisk. The solution proposed consists of an acoustic excitation system, exciting the structure in a non-intrusive way. This test bench is made up of multiple speakers driven by a voltage module, controlled by a software developed at V2i. One speaker is placed under each blade, which allows exciting the dedicated blade with a desired amplitude and phase. Then, the response of the blisk is measured with a laser Doppler vibrometer, placed on a robot arm. In a first instance, a numerical study of the blisk is performed to identify its modal properties. In parallel with this, an experimental mistuning identification method, named the Component Mode Mistuning method, is presented and implemented. This method allows both to compute the mistuned modal properties of the investigated blisk for a given mistuning pattern and inversely, to identify the mistuning from experimental measures. Thirdly, the excitation system is developed, from the choice of the tools to the assembly. Thereafter, to excite each blade with the same amplitude, an accurate process of calibration is conducted. Finally, some tests are performed with the developed test bench: a classical modal analysis by acoustic excitation is made first, and then traveling and standing wave excitations are applied.
Choose an application
Modelling and simulation in acoustics is currently gaining importance. In fact, with the development and improvement of innovative computational techniques and with the growing need for predictive models, an impressive boost has been observed in several research and application areas, such as noise control, indoor acoustics, and industrial applications. This led us to the proposal of a special issue about “Modelling, Simulation and Data Analysis in Acoustical Problems”, as we believe in the importance of these topics in modern acoustics’ studies. In total, 81 papers were submitted and 33 of them were published, with an acceptance rate of 37.5%. According to the number of papers submitted, it can be affirmed that this is a trending topic in the scientific and academic community and this special issue will try to provide a future reference for the research that will be developed in coming years.
Research & information: general --- noise barrier --- insertion loss --- vehicle frequencies --- diffraction --- flow speed --- Analytical solutions --- FDTD --- EMATs --- beam directivity --- perforate tube silencer --- transmission loss (TL) --- pressure loss --- computational fluid dynamics (CFD) --- temperature --- air flow velocity --- graphical bilinear method --- seismic survey --- dynamic cone penetration test --- soil depth --- time-distance curve --- KZK equation --- fractional order derivative --- ultrasound hyperthermia --- HIFU --- acoustic simulation --- Kramers–Kronig relation --- stereo audio coding --- Principal Component Analysis (PCA) --- multi-frame --- Pyramid Vector Quantization (PVQ) --- bowel sound --- bowel motility --- automatic detection/evaluation --- power-normalized cepstral coefficients --- noncontact instrumentation --- acoustic localization --- cross array --- moving sound source --- discrete sampling --- error analysis --- open-air theatres --- acoustical measurements --- prediction models --- historical acoustics --- Direction of Arrival (DOA) --- time-frequency (TF) mask --- speech sparsity --- speech enhancement (SE) --- acoustic vector sensor (AVS) --- intelligent service robot --- voice generation --- multichannel electroglottograph --- larynx acoustics --- fingerprinting acoustic localization --- iterative interpolation --- K-Means clustering --- Two-stage matching --- Adjacent RPs --- dynamic tissue property --- Westervelt equation --- thermal damage zone --- submerged floating tunnel (SFT) --- mooring line --- coupled dynamics --- hydro-elastic responses --- wet natural frequencies --- mooring tension --- seismic excitation --- wave excitation --- seaquake --- thick annular circular plate --- Rayleigh integral --- finite element modeling --- rectangular and concentric stiffener patches --- taper ratio --- thickness variation --- MRI --- Zone Plates --- ultrasonic lenses --- piano playing --- vibrotactile feedback --- interaction --- musical performance --- auditory perception --- sensors --- actuators --- crack growth --- acoustic echo --- COSMO --- p-value --- l1-regularized RLS --- sparsity --- room impulse response --- total least squares --- regularization factor --- fluid-filled polyethylene (PE) pipeline --- noise control --- acoustic propagation --- cutoff phenomenon --- UWA communication --- channel modelling --- OFDM --- channel estimation --- simulation platform --- minimum variance distortionless response --- signal self-cancellation --- direction estimation --- underwater acoustic source --- spatial power spectrum --- cochlear implant --- coding strategy --- Fixed-Channel --- Channel-Picking --- vocoder simulation --- normal-hearing --- point mass --- parabolic thickness variation --- landmine detection --- lumped parameter model --- prodder --- resonance frequency --- noised-induced hearing loss --- powered surgical instruments --- ultrasonic aspirator --- transcanal endoscopic ear surgery --- balanced armature receiver --- lumped parameter method --- finite element method and Boundary element method --- focused transducer --- acoustic field --- nonuniform radiation distribution --- Bessel radiation distribution --- spherically curved uniform radiator --- rim radiation --- Lamb waves --- wooden constructions --- acoustics --- low frequency noise --- modelling --- ultrasonic guided waves --- SAFE --- rail defect detection --- mode excitation --- solid dielectrics --- acoustic emission --- artificial neural networks --- electrical treeing --- wavelets --- non-destructive testing --- high-voltage insulating systems --- boundary element method --- Helmholtz equation --- structural health monitoring --- mooring chain --- fatigue crack growth --- structural integrity --- n/a --- Kramers-Kronig relation
Choose an application
Modelling and simulation in acoustics is currently gaining importance. In fact, with the development and improvement of innovative computational techniques and with the growing need for predictive models, an impressive boost has been observed in several research and application areas, such as noise control, indoor acoustics, and industrial applications. This led us to the proposal of a special issue about “Modelling, Simulation and Data Analysis in Acoustical Problems”, as we believe in the importance of these topics in modern acoustics’ studies. In total, 81 papers were submitted and 33 of them were published, with an acceptance rate of 37.5%. According to the number of papers submitted, it can be affirmed that this is a trending topic in the scientific and academic community and this special issue will try to provide a future reference for the research that will be developed in coming years.
noise barrier --- insertion loss --- vehicle frequencies --- diffraction --- flow speed --- Analytical solutions --- FDTD --- EMATs --- beam directivity --- perforate tube silencer --- transmission loss (TL) --- pressure loss --- computational fluid dynamics (CFD) --- temperature --- air flow velocity --- graphical bilinear method --- seismic survey --- dynamic cone penetration test --- soil depth --- time-distance curve --- KZK equation --- fractional order derivative --- ultrasound hyperthermia --- HIFU --- acoustic simulation --- Kramers–Kronig relation --- stereo audio coding --- Principal Component Analysis (PCA) --- multi-frame --- Pyramid Vector Quantization (PVQ) --- bowel sound --- bowel motility --- automatic detection/evaluation --- power-normalized cepstral coefficients --- noncontact instrumentation --- acoustic localization --- cross array --- moving sound source --- discrete sampling --- error analysis --- open-air theatres --- acoustical measurements --- prediction models --- historical acoustics --- Direction of Arrival (DOA) --- time-frequency (TF) mask --- speech sparsity --- speech enhancement (SE) --- acoustic vector sensor (AVS) --- intelligent service robot --- voice generation --- multichannel electroglottograph --- larynx acoustics --- fingerprinting acoustic localization --- iterative interpolation --- K-Means clustering --- Two-stage matching --- Adjacent RPs --- dynamic tissue property --- Westervelt equation --- thermal damage zone --- submerged floating tunnel (SFT) --- mooring line --- coupled dynamics --- hydro-elastic responses --- wet natural frequencies --- mooring tension --- seismic excitation --- wave excitation --- seaquake --- thick annular circular plate --- Rayleigh integral --- finite element modeling --- rectangular and concentric stiffener patches --- taper ratio --- thickness variation --- MRI --- Zone Plates --- ultrasonic lenses --- piano playing --- vibrotactile feedback --- interaction --- musical performance --- auditory perception --- sensors --- actuators --- crack growth --- acoustic echo --- COSMO --- p-value --- l1-regularized RLS --- sparsity --- room impulse response --- total least squares --- regularization factor --- fluid-filled polyethylene (PE) pipeline --- noise control --- acoustic propagation --- cutoff phenomenon --- UWA communication --- channel modelling --- OFDM --- channel estimation --- simulation platform --- minimum variance distortionless response --- signal self-cancellation --- direction estimation --- underwater acoustic source --- spatial power spectrum --- cochlear implant --- coding strategy --- Fixed-Channel --- Channel-Picking --- vocoder simulation --- normal-hearing --- point mass --- parabolic thickness variation --- landmine detection --- lumped parameter model --- prodder --- resonance frequency --- noised-induced hearing loss --- powered surgical instruments --- ultrasonic aspirator --- transcanal endoscopic ear surgery --- balanced armature receiver --- lumped parameter method --- finite element method and Boundary element method --- focused transducer --- acoustic field --- nonuniform radiation distribution --- Bessel radiation distribution --- spherically curved uniform radiator --- rim radiation --- Lamb waves --- wooden constructions --- acoustics --- low frequency noise --- modelling --- ultrasonic guided waves --- SAFE --- rail defect detection --- mode excitation --- solid dielectrics --- acoustic emission --- artificial neural networks --- electrical treeing --- wavelets --- non-destructive testing --- high-voltage insulating systems --- boundary element method --- Helmholtz equation --- structural health monitoring --- mooring chain --- fatigue crack growth --- structural integrity --- n/a --- Kramers-Kronig relation
Choose an application
Modelling and simulation in acoustics is currently gaining importance. In fact, with the development and improvement of innovative computational techniques and with the growing need for predictive models, an impressive boost has been observed in several research and application areas, such as noise control, indoor acoustics, and industrial applications. This led us to the proposal of a special issue about “Modelling, Simulation and Data Analysis in Acoustical Problems”, as we believe in the importance of these topics in modern acoustics’ studies. In total, 81 papers were submitted and 33 of them were published, with an acceptance rate of 37.5%. According to the number of papers submitted, it can be affirmed that this is a trending topic in the scientific and academic community and this special issue will try to provide a future reference for the research that will be developed in coming years.
Research & information: general --- noise barrier --- insertion loss --- vehicle frequencies --- diffraction --- flow speed --- Analytical solutions --- FDTD --- EMATs --- beam directivity --- perforate tube silencer --- transmission loss (TL) --- pressure loss --- computational fluid dynamics (CFD) --- temperature --- air flow velocity --- graphical bilinear method --- seismic survey --- dynamic cone penetration test --- soil depth --- time-distance curve --- KZK equation --- fractional order derivative --- ultrasound hyperthermia --- HIFU --- acoustic simulation --- Kramers-Kronig relation --- stereo audio coding --- Principal Component Analysis (PCA) --- multi-frame --- Pyramid Vector Quantization (PVQ) --- bowel sound --- bowel motility --- automatic detection/evaluation --- power-normalized cepstral coefficients --- noncontact instrumentation --- acoustic localization --- cross array --- moving sound source --- discrete sampling --- error analysis --- open-air theatres --- acoustical measurements --- prediction models --- historical acoustics --- Direction of Arrival (DOA) --- time-frequency (TF) mask --- speech sparsity --- speech enhancement (SE) --- acoustic vector sensor (AVS) --- intelligent service robot --- voice generation --- multichannel electroglottograph --- larynx acoustics --- fingerprinting acoustic localization --- iterative interpolation --- K-Means clustering --- Two-stage matching --- Adjacent RPs --- dynamic tissue property --- Westervelt equation --- thermal damage zone --- submerged floating tunnel (SFT) --- mooring line --- coupled dynamics --- hydro-elastic responses --- wet natural frequencies --- mooring tension --- seismic excitation --- wave excitation --- seaquake --- thick annular circular plate --- Rayleigh integral --- finite element modeling --- rectangular and concentric stiffener patches --- taper ratio --- thickness variation --- MRI --- Zone Plates --- ultrasonic lenses --- piano playing --- vibrotactile feedback --- interaction --- musical performance --- auditory perception --- sensors --- actuators --- crack growth --- acoustic echo --- COSMO --- p-value --- l1-regularized RLS --- sparsity --- room impulse response --- total least squares --- regularization factor --- fluid-filled polyethylene (PE) pipeline --- noise control --- acoustic propagation --- cutoff phenomenon --- UWA communication --- channel modelling --- OFDM --- channel estimation --- simulation platform --- minimum variance distortionless response --- signal self-cancellation --- direction estimation --- underwater acoustic source --- spatial power spectrum --- cochlear implant --- coding strategy --- Fixed-Channel --- Channel-Picking --- vocoder simulation --- normal-hearing --- point mass --- parabolic thickness variation --- landmine detection --- lumped parameter model --- prodder --- resonance frequency --- noised-induced hearing loss --- powered surgical instruments --- ultrasonic aspirator --- transcanal endoscopic ear surgery --- balanced armature receiver --- lumped parameter method --- finite element method and Boundary element method --- focused transducer --- acoustic field --- nonuniform radiation distribution --- Bessel radiation distribution --- spherically curved uniform radiator --- rim radiation --- Lamb waves --- wooden constructions --- acoustics --- low frequency noise --- modelling --- ultrasonic guided waves --- SAFE --- rail defect detection --- mode excitation --- solid dielectrics --- acoustic emission --- artificial neural networks --- electrical treeing --- wavelets --- non-destructive testing --- high-voltage insulating systems --- boundary element method --- Helmholtz equation --- structural health monitoring --- mooring chain --- fatigue crack growth --- structural integrity
Listing 1 - 4 of 4 |
Sort by
|