Listing 1 - 4 of 4 |
Sort by
|
Choose an application
The forest ecosystem is the largest terrestrial ecosystem on earth. It not only has the highest biological productivity and the strongest ecological effect, but can also maintain carbon and oxygen balance and control temperature rise. With the rapid development of the economy, climate change has become the largest challenge to the continuation of forest ecosystem. With constantly changing climate, environmental conditions including CO2 concentration,temperature,intensity of rainfall and the probability of extreme weathers are all affected. In particular, extreme heat, extreme drought and intense fall will become more frequent and widespread. Climate change has a great impact on all ecosystems, especially forest ecosystems. As the largest carbon pool on the earth, these area play a very important role in mitigating global climate change. It is necessary to understand what changes have taken place in the growth and development of trees under climate change, the changes that have taken place in the regulation mechanism of trees when multiple stresses occur at the same time, and to determine the regulation mechanism of trees under new stresses? This book presents relevant results from scientific research in the fields of forest tree gene regulation in response to abiotic and biotic stresses that can contribute to the understanding of forest response mechanisms to different environmental signals and provide a new insight for tolerant tree improvement.
Research & information: general --- Biology, life sciences --- Forestry & related industries --- Ligustrum × vicaryi Rehd. --- aquaporin --- natural cold stress --- cold resistance --- drought stress --- waterlogging stress --- plant morphology --- physiology and biochemistry --- transcription factor --- bHLH transcription factor --- cold stress --- expression pattern --- genome-wide identification --- Liriodendron chinense --- Pinus massoniana --- aluminum stress --- transcriptomic --- WGCNA analysis --- phenylpropanoid biosynthesis --- R2R3-MYB --- Populus --- rust --- Melampsora larici-populina --- Larix kaempferi --- GRAS family --- genome-wide analysis --- phytohormone --- qRT-PCR --- Pinus massoniana Lamb. --- AP2/ERF transcription factor --- bioinformatics --- exogenous hormone --- freezing stress --- apricot kernel --- transcriptome --- transcription factors --- ROS --- regulatory network --- miRNA --- Tilia tuan --- high-throughput sequencing --- seed maturation
Choose an application
Abiotic stress represents the main constraint for agriculture, affecting plant growth and productivity worldwide. Yield losses in agriculture will be potentiated in the future by global warming, increasing contamination, and reduced availability of fertile land. The challenge for agriculture of the present and future is that of increasing the food supply for a continuously growing human population under environmental conditions that are deteriorating in many areas of the world. Minimizing the effects of diverse types of abiotic stresses represents a matter of general concern. Research on all topics related to abiotic stress tolerance, from understanding the stress response mechanisms of plants to developing cultivars and crops tolerant to stress, is a priority. This Special Issue is focused on the physiological and molecular characterization of crop resistance to abiotic stresses, including novel research, reviews, and opinion articles covering all aspects of the responses and mechanisms of plant tolerance to abiotic. Contributions on physiological, biochemical, and molecular studies of crop responses to abiotic stresses; the description and role of stress-responsive genes; marker-assisted screening of stress-tolerant genotypes; genetic engineering; and other biotechnological approaches to improve crop tolerance were considered.
silicon --- strawberry --- total antioxidants --- drought --- stress responses --- arbuscular mycorrhizal fungus (AMF) --- Rhizophagus clarus --- flood --- plants --- hormonal homeostasis --- physiological activity --- drought tolerance --- LEA --- Tevang 1 maize --- tobacco --- xylem vessel --- water stress --- root anatomy --- vegetable crops --- stomatal conductance --- canopy temperature --- chlorophyll fluorescence --- SPAD --- common buckwheat --- cotyledon --- root --- drought stress --- transcriptome analysis --- alfalfa --- evaluation --- growth --- heat stress --- physiological traits --- sodium azide --- okra --- waterlogging stress --- antioxidants --- gene expression --- salinity --- sodium --- potassium --- ion homeostasis-transport determinants --- CBL gene family --- Provitamin A --- maize --- morphological --- physiological --- biochemical --- β-carotene --- Capsicum annuum L. --- salt stress --- salicylic acid --- yeast --- proline --- pomegranate --- transcriptome --- tissue-specific --- signaling transduction pathways --- transcription factors --- ultrastructure --- osmotic stress --- wheat --- barley --- summer maize --- female panicle --- Abiotic stress --- climate change --- combined drought and heat stress --- genetic resources --- landrace accessions --- coated-urea fertilizer --- humic acid --- lignosulfonate --- natural polymers --- seaweed extract --- aquaporin --- Brassica rapa --- gas exchange parameters --- root hydraulic conductance --- zinc --- ALA --- abiotic stress --- chlorophyll --- photosynthesis --- antioxidant enzyme --- tomato cultivars --- salinity tolerance --- antioxidant activity --- lycopene --- ascorbic acid --- total polyphenols content --- Capsicum annuum --- root structure --- root hairs --- phosphorus use efficiency --- P-starvation --- macrominerals --- nutrient --- breeding --- eggplant --- wild relative --- vegetative growth --- ion homeostasis --- osmolytes --- oxidative stress --- Phaseolus --- landrace --- seed --- germination --- genetic approach --- sustainable agriculture --- weeds --- natural herbicides --- secondary metabolites --- postemergence --- phytotoxicity --- abiotic stress biomarkers --- bean landraces --- plant breeding --- salt stress tolerance --- water deficit --- water stress tolerance --- tea plant --- cold stress --- chitosan oligosaccharide --- physiological response --- plant growth --- agriculture --- traditions --- pseudo-science --- lunar phases --- physics --- biology --- education --- flooding --- nutrient stress --- ROS
Choose an application
Abiotic stress represents the main constraint for agriculture, affecting plant growth and productivity worldwide. Yield losses in agriculture will be potentiated in the future by global warming, increasing contamination, and reduced availability of fertile land. The challenge for agriculture of the present and future is that of increasing the food supply for a continuously growing human population under environmental conditions that are deteriorating in many areas of the world. Minimizing the effects of diverse types of abiotic stresses represents a matter of general concern. Research on all topics related to abiotic stress tolerance, from understanding the stress response mechanisms of plants to developing cultivars and crops tolerant to stress, is a priority. This Special Issue is focused on the physiological and molecular characterization of crop resistance to abiotic stresses, including novel research, reviews, and opinion articles covering all aspects of the responses and mechanisms of plant tolerance to abiotic. Contributions on physiological, biochemical, and molecular studies of crop responses to abiotic stresses; the description and role of stress-responsive genes; marker-assisted screening of stress-tolerant genotypes; genetic engineering; and other biotechnological approaches to improve crop tolerance were considered.
Research & information: general --- Biology, life sciences --- silicon --- strawberry --- total antioxidants --- drought --- stress responses --- arbuscular mycorrhizal fungus (AMF) --- Rhizophagus clarus --- flood --- plants --- hormonal homeostasis --- physiological activity --- drought tolerance --- LEA --- Tevang 1 maize --- tobacco --- xylem vessel --- water stress --- root anatomy --- vegetable crops --- stomatal conductance --- canopy temperature --- chlorophyll fluorescence --- SPAD --- common buckwheat --- cotyledon --- root --- drought stress --- transcriptome analysis --- alfalfa --- evaluation --- growth --- heat stress --- physiological traits --- sodium azide --- okra --- waterlogging stress --- antioxidants --- gene expression --- salinity --- sodium --- potassium --- ion homeostasis-transport determinants --- CBL gene family --- Provitamin A --- maize --- morphological --- physiological --- biochemical --- β-carotene --- Capsicum annuum L. --- salt stress --- salicylic acid --- yeast --- proline --- pomegranate --- transcriptome --- tissue-specific --- signaling transduction pathways --- transcription factors --- ultrastructure --- osmotic stress --- wheat --- barley --- summer maize --- female panicle --- Abiotic stress --- climate change --- combined drought and heat stress --- genetic resources --- landrace accessions --- coated-urea fertilizer --- humic acid --- lignosulfonate --- natural polymers --- seaweed extract --- aquaporin --- Brassica rapa --- gas exchange parameters --- root hydraulic conductance --- zinc --- ALA --- abiotic stress --- chlorophyll --- photosynthesis --- antioxidant enzyme --- tomato cultivars --- salinity tolerance --- antioxidant activity --- lycopene --- ascorbic acid --- total polyphenols content --- Capsicum annuum --- root structure --- root hairs --- phosphorus use efficiency --- P-starvation --- macrominerals --- nutrient --- breeding --- eggplant --- wild relative --- vegetative growth --- ion homeostasis --- osmolytes --- oxidative stress --- Phaseolus --- landrace --- seed --- germination --- genetic approach --- sustainable agriculture --- weeds --- natural herbicides --- secondary metabolites --- postemergence --- phytotoxicity --- abiotic stress biomarkers --- bean landraces --- plant breeding --- salt stress tolerance --- water deficit --- water stress tolerance --- tea plant --- cold stress --- chitosan oligosaccharide --- physiological response --- plant growth --- agriculture --- traditions --- pseudo-science --- lunar phases --- physics --- biology --- education --- flooding --- nutrient stress --- ROS
Choose an application
The development of new plant varieties is a long and tedious process involving the generation of large seedling populations for the selection of the best individuals. While the ability of breeders to generate large populations is almost unlimited, the selection of these seedlings is the main factor limiting the generation of new cultivars. Molecular studies for the development of marker-assisted selection (MAS) strategies are particularly useful when the evaluation of the character is expensive, time-consuming, or with long juvenile periods. The papers published in the Special Issue “Plant Genetics and Molecular Breeding” report highly novel results and testable new models for the integrative analysis of genetic (phenotyping and transmission of agronomic characters), physiology (flowering, ripening, organ development), genomic (DNA regions responsible for the different agronomic characters), transcriptomic (gene expression analysis of the characters), proteomic (proteins and enzymes involved in the expression of the characters), metabolomic (secondary metabolites), and epigenetic (DNA methylation and histone modifications) approaches for the development of new MAS strategies. These molecular approaches together with an increasingly accurate phenotyping will facilitate the breeding of new climate-resilient varieties resistant to abiotic and biotic stress, with suitable productivity and quality, to extend the adaptation and viability of the current varieties.
n/a --- GA2ox7 --- cabbage --- OsGPAT3 --- oleic acid --- OsCDPK1 --- nutrient use efficiency --- stem borer --- yellow-green-leaf mutant --- branching --- epigenetics --- NPK fertilizers --- particle bombardment --- stress tolerance --- overexpression --- glycine --- heat-stress --- bulk segregant RNA-seq --- Prunus --- protein-protein interaction --- AdRAP2.3 --- plant architecture --- waterlogging stress --- genes --- Cucumis sativus L. --- Flower color --- resistance --- Tobacco --- gynomonoecy --- drought stress --- Brassica oleracea --- starch biosynthesis --- Overexpression --- WUS --- agronomic traits --- Ghd7 --- the modified MutMap method --- cry2A gene --- light-induced --- gene expression --- breeding --- Heterodera schachtii --- ABA --- Green tissue-specific expression --- subcellular localization --- squamosa promoter binding protein-like --- transcriptome --- FAD2 --- As3+ stress --- metallothionein --- flowering --- bisulfite sequencing --- tomato --- quantitative trait loci --- Promoter --- marker–trait association --- DEGs --- cytoplasmic male sterile --- Rosa rugosa --- MADS transcription factor --- yield --- P. suffruticosa --- CYC2 --- common wild rice --- Actinidia deliciosa --- gene-by-gene interaction --- Aechmea fasciata --- hybrid rice --- soybean --- R2R3-MYB --- bread wheat --- BRANCHED1 (BRC1) --- linoleic acid --- differentially expressed genes --- complex traits --- transgenic chrysanthemum --- D-genome --- Brassica --- candidate gene --- SmJMT --- gene expression pattern --- RNA-Seq --- candidate genes --- leaf shape --- Brassica napus --- recombination-suppressed region --- anthocyanin --- WRKY transcription factor --- Idesia polycarpa var --- single nucleotide polymorphism --- bud abortion --- QTL --- reproductive organ --- transient overexpression --- Elongated Internode (EI) --- sugarcane --- abiotic stress --- Oryza sativa L. --- RrGT2 gene --- Hd1 --- cZR3 --- cytoplasmic male sterility (CMS) --- seed development --- tapetum --- near-isogenic line (NIL) --- phytohormones --- TCP transcription factor --- pollen accumulation --- Anthocyanin --- WRKY --- quantitative trait loci (QTLs) --- salt stress --- floral scent --- sucrose --- Ogura-CMS --- root traits --- endosperm development --- Zea mays L. --- sesame --- Bryum argenteum --- AP2/ERF genes --- transcriptional regulation --- WB1 --- haplotype block --- broccoli --- agronomic efficiency --- durum wheat --- gene pyramiding --- Oryza sativa --- genetics --- flowering time --- Cicer arietinum --- Hs1pro-1 --- endosperm appearance --- phenolic acids --- anther wall --- bromeliad --- genomics --- transgenic --- DgWRKY2 --- Clone --- yield trait --- flower symmetry --- partial factor productivity --- rice --- molecular breeding --- genotyping-by-sequencing --- Chimonanthus praecox --- nectary --- Salvia miltiorrhiza --- pollen development --- regulation --- ZmES22 --- genome-wide association study --- VIGS --- iTRAQ --- genome-wide association study (GWAS) --- ethylene-responsive factor --- starch --- molecular markers --- rice quality --- Chrysanthemum morifolium --- marker-trait association
Listing 1 - 4 of 4 |
Sort by
|