Listing 1 - 4 of 4 |
Sort by
|
Choose an application
Engineering mathematics is a branch of applied mathematics where mathematical methods and techniques are implemented for solving problems related to the engineering and industry. It also represents a multidisciplinary approach where theoretical and practical aspects are deeply merged with the aim at obtaining optimized solutions. In line with that, the present Special Issue, 'Engineering Mathematics in Ship Design', is focused, in particular, with the use of this sort of engineering science in the design of ships and vessels. Articles are welcome when applied science or computation science in ship design represent the core of the discussion.
Lead-Zirconium-Titanium (PZT) --- n/a --- H.O.M.E.R. nozzle --- finite element --- low-speed Diesel engine --- piezoelectric sensor --- AHP method --- environmental management system --- SPH --- state-of-the-art --- marine transport --- single-stepped planing hulls --- optimisation --- finite element method --- computational fluid dynamic --- slamming --- FSI --- roll motion --- harmonic excitation --- external forces --- towing tank tests --- modelling --- roll damping --- ISO 9126 --- selection --- stiffened plate --- numerical model --- damaged sensor --- CFD --- symmetric 2D + T theory --- hydroelasticity --- ISO 14001 --- water entry --- plate --- constitutive model --- turbulence model --- SHIPMOVE --- impact traction --- fixed pitch propeller --- stiffeners --- numerical simulation --- cavitation --- controllable pitch propeller --- ISO 14598 --- MMG Model --- hydrodynamic forces --- balanced scorecard --- finite volume method --- deflection --- constructal design --- fluid-structure interaction --- MCDM method --- marine industry --- ship design --- fracture mechanics --- coanda effect
Choose an application
This book presents collective works published in the recent Special Issue (SI) entitled "Aero/Hydrodynamics and Symmetry". These works address the existence of symmetry and its breakdown in aero-/hydro-dynamics and their related applications. The presented problems are complex nonlinear, non-Newtonian fluid flow problems that are (in some cases) coupled with heat transfer, phase change, nanofluidic, and magnetohydrodynamics phenomena. The applications vary and range from polymer chain transfer in micro-channel to the evaluation of vertical axis wind turbines, as well as autonomous underwater hovering vehicles. Recent advances in numerical, theoretical, and experimental methodologies, as well as finding new physics, new methodological developments, and their limitations are presented within the scope of the current book. Among others, in the presented works, special attention is paid to validation and improving the accuracy of the presented methodologies. This book brings together a collection of inter-/multi-disciplinary works applied to many engineering applications in a coherent manner.
History of engineering & technology --- Savonius vertical axis wind turbine --- horizontal overlap ratio --- vertical overlap ratio --- torque coefficient --- power coefficient --- Advection–diffusion --- fractional derivative --- concentrated source --- integral transform --- Burgers’ fluid --- velocity field --- shear stress --- Laplace transform --- modified Bessel function --- Stehfest’s algorithm --- MATHCAD --- electroosmotic flow --- power law fluid --- nanoparticles --- MHD --- entropy generation --- convergence analysis --- residual error --- autonomous underwater vehicle (AUV) --- airborne-launched AUV --- autonomous underwater hovering vehicle (AUH) --- water entry impact force --- computational fluid dynamics (CFD) --- two-phase flow --- Autonomous Underwater Vehicle (AUV) --- Autonomous Underwater Hovering Vehicle (AUH) --- hydrodynamic interaction --- response amplitude operator (RAO) --- wave effects --- symmetric flying wing --- plasma flow control --- energy --- stall --- dimensionless frequency --- particle image velocimetry --- SA–NaAlg fluid --- porosity --- fractional model --- Atangana–Baleanu derivative --- large eddy simulation --- subgrid scale model --- diffuser --- dynamic one equation model --- Vreman model --- separation --- heat conduction --- non-fourier --- solution structure theorems --- superposition approach --- Buongiorno model --- unsteady flow --- nanoliquid --- special third-grade liquid --- non-linear thermal radiation --- magneto hydro-dynamics (MHD) --- dissipative particle dynamics (DPD) --- Hartmann number (Ha-value) --- harmony bond coefficient or spring constant (K) --- Savonius vertical axis wind turbine --- horizontal overlap ratio --- vertical overlap ratio --- torque coefficient --- power coefficient --- Advection–diffusion --- fractional derivative --- concentrated source --- integral transform --- Burgers’ fluid --- velocity field --- shear stress --- Laplace transform --- modified Bessel function --- Stehfest’s algorithm --- MATHCAD --- electroosmotic flow --- power law fluid --- nanoparticles --- MHD --- entropy generation --- convergence analysis --- residual error --- autonomous underwater vehicle (AUV) --- airborne-launched AUV --- autonomous underwater hovering vehicle (AUH) --- water entry impact force --- computational fluid dynamics (CFD) --- two-phase flow --- Autonomous Underwater Vehicle (AUV) --- Autonomous Underwater Hovering Vehicle (AUH) --- hydrodynamic interaction --- response amplitude operator (RAO) --- wave effects --- symmetric flying wing --- plasma flow control --- energy --- stall --- dimensionless frequency --- particle image velocimetry --- SA–NaAlg fluid --- porosity --- fractional model --- Atangana–Baleanu derivative --- large eddy simulation --- subgrid scale model --- diffuser --- dynamic one equation model --- Vreman model --- separation --- heat conduction --- non-fourier --- solution structure theorems --- superposition approach --- Buongiorno model --- unsteady flow --- nanoliquid --- special third-grade liquid --- non-linear thermal radiation --- magneto hydro-dynamics (MHD) --- dissipative particle dynamics (DPD) --- Hartmann number (Ha-value) --- harmony bond coefficient or spring constant (K)
Choose an application
This book presents collective works published in the recent Special Issue (SI) entitled "Aero/Hydrodynamics and Symmetry". These works address the existence of symmetry and its breakdown in aero-/hydro-dynamics and their related applications. The presented problems are complex nonlinear, non-Newtonian fluid flow problems that are (in some cases) coupled with heat transfer, phase change, nanofluidic, and magnetohydrodynamics phenomena. The applications vary and range from polymer chain transfer in micro-channel to the evaluation of vertical axis wind turbines, as well as autonomous underwater hovering vehicles. Recent advances in numerical, theoretical, and experimental methodologies, as well as finding new physics, new methodological developments, and their limitations are presented within the scope of the current book. Among others, in the presented works, special attention is paid to validation and improving the accuracy of the presented methodologies. This book brings together a collection of inter-/multi-disciplinary works applied to many engineering applications in a coherent manner.
History of engineering & technology --- Savonius vertical axis wind turbine --- horizontal overlap ratio --- vertical overlap ratio --- torque coefficient --- power coefficient --- Advection–diffusion --- fractional derivative --- concentrated source --- integral transform --- Burgers’ fluid --- velocity field --- shear stress --- Laplace transform --- modified Bessel function --- Stehfest’s algorithm --- MATHCAD --- electroosmotic flow --- power law fluid --- nanoparticles --- MHD --- entropy generation --- convergence analysis --- residual error --- autonomous underwater vehicle (AUV) --- airborne-launched AUV --- autonomous underwater hovering vehicle (AUH) --- water entry impact force --- computational fluid dynamics (CFD) --- two-phase flow --- Autonomous Underwater Vehicle (AUV) --- Autonomous Underwater Hovering Vehicle (AUH) --- hydrodynamic interaction --- response amplitude operator (RAO) --- wave effects --- symmetric flying wing --- plasma flow control --- energy --- stall --- dimensionless frequency --- particle image velocimetry --- SA–NaAlg fluid --- porosity --- fractional model --- Atangana–Baleanu derivative --- large eddy simulation --- subgrid scale model --- diffuser --- dynamic one equation model --- Vreman model --- separation --- heat conduction --- non-fourier --- solution structure theorems --- superposition approach --- Buongiorno model --- unsteady flow --- nanoliquid --- special third-grade liquid --- non-linear thermal radiation --- magneto hydro-dynamics (MHD) --- dissipative particle dynamics (DPD) --- Hartmann number (Ha-value) --- harmony bond coefficient or spring constant (K)
Choose an application
This book presents collective works published in the recent Special Issue (SI) entitled "Aero/Hydrodynamics and Symmetry". These works address the existence of symmetry and its breakdown in aero-/hydro-dynamics and their related applications. The presented problems are complex nonlinear, non-Newtonian fluid flow problems that are (in some cases) coupled with heat transfer, phase change, nanofluidic, and magnetohydrodynamics phenomena. The applications vary and range from polymer chain transfer in micro-channel to the evaluation of vertical axis wind turbines, as well as autonomous underwater hovering vehicles. Recent advances in numerical, theoretical, and experimental methodologies, as well as finding new physics, new methodological developments, and their limitations are presented within the scope of the current book. Among others, in the presented works, special attention is paid to validation and improving the accuracy of the presented methodologies. This book brings together a collection of inter-/multi-disciplinary works applied to many engineering applications in a coherent manner.
Savonius vertical axis wind turbine --- horizontal overlap ratio --- vertical overlap ratio --- torque coefficient --- power coefficient --- Advection–diffusion --- fractional derivative --- concentrated source --- integral transform --- Burgers’ fluid --- velocity field --- shear stress --- Laplace transform --- modified Bessel function --- Stehfest’s algorithm --- MATHCAD --- electroosmotic flow --- power law fluid --- nanoparticles --- MHD --- entropy generation --- convergence analysis --- residual error --- autonomous underwater vehicle (AUV) --- airborne-launched AUV --- autonomous underwater hovering vehicle (AUH) --- water entry impact force --- computational fluid dynamics (CFD) --- two-phase flow --- Autonomous Underwater Vehicle (AUV) --- Autonomous Underwater Hovering Vehicle (AUH) --- hydrodynamic interaction --- response amplitude operator (RAO) --- wave effects --- symmetric flying wing --- plasma flow control --- energy --- stall --- dimensionless frequency --- particle image velocimetry --- SA–NaAlg fluid --- porosity --- fractional model --- Atangana–Baleanu derivative --- large eddy simulation --- subgrid scale model --- diffuser --- dynamic one equation model --- Vreman model --- separation --- heat conduction --- non-fourier --- solution structure theorems --- superposition approach --- Buongiorno model --- unsteady flow --- nanoliquid --- special third-grade liquid --- non-linear thermal radiation --- magneto hydro-dynamics (MHD) --- dissipative particle dynamics (DPD) --- Hartmann number (Ha-value) --- harmony bond coefficient or spring constant (K)
Listing 1 - 4 of 4 |
Sort by
|