Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULiège (2)

VIVES (2)

Vlaams Parlement (2)

More...

Resource type

book (3)


Language

English (3)


Year
From To Submit

2020 (3)

Listing 1 - 3 of 3
Sort by

Book
Pharmaceutical Residues in the Environment
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Pharmaceuticals, due to their pseudo-persistence and biological activity as well as their extensive use in human and veterinary medicine, are a class of environmental contaminants that is of emerging concern. In contrast to some conventional pollutants, they are continuously delivered at low levels, which might give rise to toxicity even without high persistence rates. These chemicals are designed to have a specific physiological mode of action and to resist frequently inactivation before exerting their intended therapeutic effect. These features, among others, result in the bioaccumulation of pharmaceuticals which are responsible for toxic effects in aquatic and terrestrial ecosystems. It is extremely important to know how to remove them from the environment and/or how to implement procedures or treatments resulting in their biological inactivation. Although great advances have been made in their detection in aquatic matrices, there remains limited analytical methodologies available for the trace analysis of target and non-target pharmaceuticals in matrices such as soils, sediments, or biota. There are still many gaps in the data on their fate and behavior in the environment as well as on their threats to ecological and human health. This book has included nine current research and three review articles in this field.

Keywords

ifosfamide --- cyclophosphamide --- 5-fluorouracil --- cytostatic drug --- BDD anode --- electrochemical oxidation --- intermediates --- lincomycin --- monensin --- roxarsone --- migration --- residual --- toxicity --- pharmaceuticals --- endocrine disrupting compounds --- hydroponic cultivation --- determining target pollutants in plant materials --- municipal wastewater treatment plants --- ionic liquids --- green chemistry --- environmental and biological samples --- sample preparation --- determination of pharmaceuticals --- chromatographic methods --- electromigration techniques --- sulfamethoxazole --- antibiotic resistance genes --- sul genes --- bacterial community --- constructed wetlands --- environmental contaminants --- pharmaceuticals occurrence --- aquatic compartments --- soil --- poultry farms --- ultra-high performance liquid chromatography --- antibiotics, antibiotic resistance --- antibiotics --- wastewater --- sewage sludge --- risk assessment --- removal efficiency --- LC-MS/MS analysis --- Spirotox --- fluoxetine --- sertraline --- paroxetine --- mianserin --- pharmaceuticals in the environment --- wastewaters --- pharmaceutical residues --- conventional wastewater treatments --- solid phase extraction --- pharmaceuticals toxicity --- environmental risk assessment --- antibiotic resistance genes (ARGs) --- antibiotic-resistant bacteria (ARB) --- wastewater treatment plants (WWTPs) --- activated sludge (AS) --- constructed wetlands (CWs) --- environmental pollution --- spread of resistance --- tetracyclines --- sulfonamides --- fate in the environment --- fate in WWTPs --- ecotoxicity --- antibiotic resistance --- development of methods


Book
Pharmaceutical Residues in the Environment
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Pharmaceuticals, due to their pseudo-persistence and biological activity as well as their extensive use in human and veterinary medicine, are a class of environmental contaminants that is of emerging concern. In contrast to some conventional pollutants, they are continuously delivered at low levels, which might give rise to toxicity even without high persistence rates. These chemicals are designed to have a specific physiological mode of action and to resist frequently inactivation before exerting their intended therapeutic effect. These features, among others, result in the bioaccumulation of pharmaceuticals which are responsible for toxic effects in aquatic and terrestrial ecosystems. It is extremely important to know how to remove them from the environment and/or how to implement procedures or treatments resulting in their biological inactivation. Although great advances have been made in their detection in aquatic matrices, there remains limited analytical methodologies available for the trace analysis of target and non-target pharmaceuticals in matrices such as soils, sediments, or biota. There are still many gaps in the data on their fate and behavior in the environment as well as on their threats to ecological and human health. This book has included nine current research and three review articles in this field.

Keywords

Research & information: general --- Environmental economics --- ifosfamide --- cyclophosphamide --- 5-fluorouracil --- cytostatic drug --- BDD anode --- electrochemical oxidation --- intermediates --- lincomycin --- monensin --- roxarsone --- migration --- residual --- toxicity --- pharmaceuticals --- endocrine disrupting compounds --- hydroponic cultivation --- determining target pollutants in plant materials --- municipal wastewater treatment plants --- ionic liquids --- green chemistry --- environmental and biological samples --- sample preparation --- determination of pharmaceuticals --- chromatographic methods --- electromigration techniques --- sulfamethoxazole --- antibiotic resistance genes --- sul genes --- bacterial community --- constructed wetlands --- environmental contaminants --- pharmaceuticals occurrence --- aquatic compartments --- soil --- poultry farms --- ultra-high performance liquid chromatography --- antibiotics, antibiotic resistance --- antibiotics --- wastewater --- sewage sludge --- risk assessment --- removal efficiency --- LC-MS/MS analysis --- Spirotox --- fluoxetine --- sertraline --- paroxetine --- mianserin --- pharmaceuticals in the environment --- wastewaters --- pharmaceutical residues --- conventional wastewater treatments --- solid phase extraction --- pharmaceuticals toxicity --- environmental risk assessment --- antibiotic resistance genes (ARGs) --- antibiotic-resistant bacteria (ARB) --- wastewater treatment plants (WWTPs) --- activated sludge (AS) --- constructed wetlands (CWs) --- environmental pollution --- spread of resistance --- tetracyclines --- sulfonamides --- fate in the environment --- fate in WWTPs --- ecotoxicity --- antibiotic resistance --- development of methods --- ifosfamide --- cyclophosphamide --- 5-fluorouracil --- cytostatic drug --- BDD anode --- electrochemical oxidation --- intermediates --- lincomycin --- monensin --- roxarsone --- migration --- residual --- toxicity --- pharmaceuticals --- endocrine disrupting compounds --- hydroponic cultivation --- determining target pollutants in plant materials --- municipal wastewater treatment plants --- ionic liquids --- green chemistry --- environmental and biological samples --- sample preparation --- determination of pharmaceuticals --- chromatographic methods --- electromigration techniques --- sulfamethoxazole --- antibiotic resistance genes --- sul genes --- bacterial community --- constructed wetlands --- environmental contaminants --- pharmaceuticals occurrence --- aquatic compartments --- soil --- poultry farms --- ultra-high performance liquid chromatography --- antibiotics, antibiotic resistance --- antibiotics --- wastewater --- sewage sludge --- risk assessment --- removal efficiency --- LC-MS/MS analysis --- Spirotox --- fluoxetine --- sertraline --- paroxetine --- mianserin --- pharmaceuticals in the environment --- wastewaters --- pharmaceutical residues --- conventional wastewater treatments --- solid phase extraction --- pharmaceuticals toxicity --- environmental risk assessment --- antibiotic resistance genes (ARGs) --- antibiotic-resistant bacteria (ARB) --- wastewater treatment plants (WWTPs) --- activated sludge (AS) --- constructed wetlands (CWs) --- environmental pollution --- spread of resistance --- tetracyclines --- sulfonamides --- fate in the environment --- fate in WWTPs --- ecotoxicity --- antibiotic resistance --- development of methods


Book
Bio-Based Polymers for Engineered Green Materials
Authors: ---
ISBN: 3039289268 303928925X Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

With daily signals, Nature is communicating us that its unconscious wicked exploitation is no more sustainable. Our socio-economic system focuses on production increasing without considering the consequences. We are intoxicating ourselves on a daily bases just to allow the system to perpetuate itself. The time to switch into more natural solutions is come and the scientific community is ready to offer more natural product with comparable performance then the market products we are used to deal with. This book collects a broad set of scientific examples in which research groups from all over the world, aim to replace fossil fuel-based solutions with biomass derived materials. In here, some of the most innovative developments in the field of bio-materials are reported considering topics which goes from biomass valorization to the synthesis of high preforming bio-based materials.

Keywords

chitosan --- graphene oxide --- microstructure --- autoxidation --- heavy metals --- polycaprolactone --- precipitation --- thermosetting polymers --- thermal degradation --- humidity sensor --- asphalt rubber --- tung oil --- nanobiocomposites --- ionic liquid --- GC-MS --- hybrid nonisocyanate polyurethane --- physicochemical properties --- alginate sponge --- Bioflex --- dimer acid --- bio-asphalt --- benzoyl cellulose --- Peptone --- transparent wood --- biocomposite --- nanoclays --- storage stability --- solvent- and catalyst-free --- microcellulose fiber --- lignin-containing cellulose nanofibrils --- polylactic acid (PLA) --- bio-inspired interfaces --- polyhydroxyalkanoates --- strain sensor --- enzymatic saccharification --- headspace solid phase microextraction --- PHBV --- electrical resistance --- melt condensation --- cement --- solution casting --- orange waste --- hybrid composites --- biopolymers --- TEMPO oxidation --- pollutant adsorbents --- Escherichia coli --- bio-nanocomposites --- TiO2 anatase --- metal binding --- liquid natural rubber --- hydrotropic treatment --- metal chloride --- feast-famine --- biomass resources --- wood --- electroless deposition --- one-pot synthesis --- thermoplastic starch --- films --- lignin-carbohydrate complex --- cellulose --- corn starch --- microencapsulated phase change material (MPCM) --- differential scanning calorimetry --- compatibility --- natural fibers --- workability --- silkworm cocoons --- lignin content --- polylactic acid --- porous structure --- electrospinning --- nanocellulose fibers --- H2O2 bleaching treatment --- polysaccharides --- mixing sequence --- porosity --- lignocellulosic nanofibrils --- dense structure --- alkali lignin --- polydopamine coating --- nuclear magnetic resonance --- cationic dyes --- poly(lactic acid) and composite films --- endothermic effect --- HSQC-NMR --- Microbial nutrient --- n/a --- toughening --- X-ray diffraction --- water resistance --- waste biomass --- lignin --- UV light --- ultrafiltration --- two-step lyophilization --- mechanical degradation --- bio-based --- methylene blue --- stearoyl cellulose --- ONP fibers --- anionic surfactants --- Hatscheck process --- osteoblast proliferation --- resource recovery --- dissolution --- copper coating --- bacterial cellulose --- hydrogel --- iron chelation --- knotwood --- sensitivity --- mixed microbial cultures --- dimensional stability --- volatiles --- lignocellulose --- Artemisia vulgaris --- surface modification --- PHA --- crosslinked microparticles --- pyrene --- composites --- galactoglucomannan --- polymeric composites --- kaempferol --- tannin-furanic foam --- Solanyl --- wastewater treatments --- adsorption capacity --- heat treatment --- thermal gravimetric analysis --- WAXS --- unsaturated polyester resins --- pulp fibers --- free-radical polymerization --- larixol --- delignification --- antifouling --- chemical composition --- hemicellulose --- tissue engineering --- extrusion-compounding --- membrane --- photodegradation --- structural plastics --- scanning electron microscope --- phenanthrene --- thermal properties --- immobilized TEMPO --- Staphylococcus aureus --- adsorption --- wood modification --- structure–property relationship --- physical property --- film --- mechanical properties --- tannin --- Bio-based foams --- latex state --- paper-based scaffolds --- skincare --- pyrolysis mechanism --- emulsion-solvent evaporation method --- bioplastics --- imidazolium --- fractionation --- cost --- fiber-cement --- lyocell fiber --- recycling --- kenaf fiber --- thermal stability --- transport properties --- SAXS --- silanization --- cellulose nanofibers --- taxifolin --- tannin polymer --- vibrational spectroscopy --- robust fiber network --- nanocelluloses --- poly(lactic acid) --- Anti-bacterial silver nanoparticle --- cellulose nanocrystals --- structure-property relationship

Listing 1 - 3 of 3
Sort by