Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULB (3)

ULiège (3)

VIVES (3)

More...

Resource type

book (7)


Language

English (7)


Year
From To Submit

2022 (6)

2019 (1)

Listing 1 - 7 of 7
Sort by

Book
MEMS Packaging Technologies and 3D Integration
Author:
Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue introduces recent research results on MEMS packaging and 3D integration whose subjects can be divided as follow; three papers on biocompatible implantable packaging, three papers on interconnect, three papers on bonding technologies, one paper on vacuum packaging, and three papers on modeling and simulation.

Keywords

Research & information: general --- Biology, life sciences --- heterogeneous integration --- wafer bonding --- wafer sealing --- room-temperature bonding --- Au-Au bonding --- surface activated bonding --- Au film thickness --- surface roughness --- microelectromechanical systems (MEMS) packaging --- inkjet printing --- redistribution layers --- capacitive micromachined ultrasound transducers (CMUT) --- fan-out wafer-level packaging (FOWLP) --- adhesion --- thin film metal --- parylene --- neural probe --- scotch tape test --- FEM --- MEMS resonator --- temperature coefficient --- thermal stress --- millimeter-wave --- redundant TSV --- equivalent circuit model --- S-parameters extraction --- technology evaluation --- MEMS and IC integration --- MCDM --- fuzzy AHP --- fuzzy VIKOR --- fan-out wafer-level package --- finite element --- glass substrate --- reliability life --- packaging-on-packaging --- thermal sensors --- TMOS sensor --- finite difference time domain --- optical and electromagnetics simulations --- finite element analysis --- ultrasonic bonding --- metal direct bonding --- microsystem integration --- biocompatible packaging --- implantable --- reliability --- Finite element method (FEM) --- simulation --- multilayer reactive bonding --- integrated nanostructure-multilayer reactive system --- spontaneous self-ignition --- self-propagating exothermic reaction --- Pd/Al reactive multilayer system --- Ni/Al reactive multilayer system --- low-temperature MEMS packaging --- crack propagation --- microbump --- deflection angle --- stress intensity factor (SIF) --- polymer packaging --- neural interface --- chronic implantation --- heterogeneous integration --- wafer bonding --- wafer sealing --- room-temperature bonding --- Au-Au bonding --- surface activated bonding --- Au film thickness --- surface roughness --- microelectromechanical systems (MEMS) packaging --- inkjet printing --- redistribution layers --- capacitive micromachined ultrasound transducers (CMUT) --- fan-out wafer-level packaging (FOWLP) --- adhesion --- thin film metal --- parylene --- neural probe --- scotch tape test --- FEM --- MEMS resonator --- temperature coefficient --- thermal stress --- millimeter-wave --- redundant TSV --- equivalent circuit model --- S-parameters extraction --- technology evaluation --- MEMS and IC integration --- MCDM --- fuzzy AHP --- fuzzy VIKOR --- fan-out wafer-level package --- finite element --- glass substrate --- reliability life --- packaging-on-packaging --- thermal sensors --- TMOS sensor --- finite difference time domain --- optical and electromagnetics simulations --- finite element analysis --- ultrasonic bonding --- metal direct bonding --- microsystem integration --- biocompatible packaging --- implantable --- reliability --- Finite element method (FEM) --- simulation --- multilayer reactive bonding --- integrated nanostructure-multilayer reactive system --- spontaneous self-ignition --- self-propagating exothermic reaction --- Pd/Al reactive multilayer system --- Ni/Al reactive multilayer system --- low-temperature MEMS packaging --- crack propagation --- microbump --- deflection angle --- stress intensity factor (SIF) --- polymer packaging --- neural interface --- chronic implantation


Book
MEMS Packaging Technologies and 3D Integration
Author:
Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue introduces recent research results on MEMS packaging and 3D integration whose subjects can be divided as follow; three papers on biocompatible implantable packaging, three papers on interconnect, three papers on bonding technologies, one paper on vacuum packaging, and three papers on modeling and simulation.

Keywords

Research & information: general --- Biology, life sciences --- heterogeneous integration --- wafer bonding --- wafer sealing --- room-temperature bonding --- Au-Au bonding --- surface activated bonding --- Au film thickness --- surface roughness --- microelectromechanical systems (MEMS) packaging --- inkjet printing --- redistribution layers --- capacitive micromachined ultrasound transducers (CMUT) --- fan-out wafer-level packaging (FOWLP) --- adhesion --- thin film metal --- parylene --- neural probe --- scotch tape test --- FEM --- MEMS resonator --- temperature coefficient --- thermal stress --- millimeter-wave --- redundant TSV --- equivalent circuit model --- S-parameters extraction --- technology evaluation --- MEMS and IC integration --- MCDM --- fuzzy AHP --- fuzzy VIKOR --- fan-out wafer-level package --- finite element --- glass substrate --- reliability life --- packaging-on-packaging --- thermal sensors --- TMOS sensor --- finite difference time domain --- optical and electromagnetics simulations --- finite element analysis --- ultrasonic bonding --- metal direct bonding --- microsystem integration --- biocompatible packaging --- implantable --- reliability --- Finite element method (FEM) --- simulation --- multilayer reactive bonding --- integrated nanostructure-multilayer reactive system --- spontaneous self-ignition --- self-propagating exothermic reaction --- Pd/Al reactive multilayer system --- Ni/Al reactive multilayer system --- low-temperature MEMS packaging --- crack propagation --- microbump --- deflection angle --- stress intensity factor (SIF) --- polymer packaging --- neural interface --- chronic implantation --- n/a


Book
MEMS Packaging Technologies and 3D Integration
Author:
Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue introduces recent research results on MEMS packaging and 3D integration whose subjects can be divided as follow; three papers on biocompatible implantable packaging, three papers on interconnect, three papers on bonding technologies, one paper on vacuum packaging, and three papers on modeling and simulation.

Keywords

heterogeneous integration --- wafer bonding --- wafer sealing --- room-temperature bonding --- Au-Au bonding --- surface activated bonding --- Au film thickness --- surface roughness --- microelectromechanical systems (MEMS) packaging --- inkjet printing --- redistribution layers --- capacitive micromachined ultrasound transducers (CMUT) --- fan-out wafer-level packaging (FOWLP) --- adhesion --- thin film metal --- parylene --- neural probe --- scotch tape test --- FEM --- MEMS resonator --- temperature coefficient --- thermal stress --- millimeter-wave --- redundant TSV --- equivalent circuit model --- S-parameters extraction --- technology evaluation --- MEMS and IC integration --- MCDM --- fuzzy AHP --- fuzzy VIKOR --- fan-out wafer-level package --- finite element --- glass substrate --- reliability life --- packaging-on-packaging --- thermal sensors --- TMOS sensor --- finite difference time domain --- optical and electromagnetics simulations --- finite element analysis --- ultrasonic bonding --- metal direct bonding --- microsystem integration --- biocompatible packaging --- implantable --- reliability --- Finite element method (FEM) --- simulation --- multilayer reactive bonding --- integrated nanostructure-multilayer reactive system --- spontaneous self-ignition --- self-propagating exothermic reaction --- Pd/Al reactive multilayer system --- Ni/Al reactive multilayer system --- low-temperature MEMS packaging --- crack propagation --- microbump --- deflection angle --- stress intensity factor (SIF) --- polymer packaging --- neural interface --- chronic implantation --- n/a


Book
Optical Gas Sensing: Media, Mechanisms and Applications
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Optical gas sensing is one of the fastest developing research areas in laser spectroscopy. Continuous development of new coherent light sources operating especially in the Mid-IR spectral band (QCL—Quantum Cascade Lasers, ICL—Interband Cascade Lasers, OPO—Optical Parametric Oscillator, DFG—Difference Frequency Generation, optical frequency combs, etc.) stimulates new, sophisticated methods and technological solutions in this area. The development of clever techniques in gas detection based on new mechanisms of sensing (photoacoustic, photothermal, dispersion, etc.) supported by advanced applied electronics and huge progress in signal processing allows us to introduce more sensitive, broader-band and miniaturized optical sensors. Additionally, the substantial development of fast and sensitive photodetectors in MIR and FIR is of great support to progress in gas sensing. Recent material and technological progress in the development of hollow-core optical fibers allowing low-loss transmission of light in both Near- and Mid-IR has opened a new route for obtaining the low-volume, long optical paths that are so strongly required in laser-based gas sensors, leading to the development of a novel branch of laser-based gas detectors. This Special Issue summarizes the most recent progress in the development of optical sensors utilizing novel materials and laser-based gas sensing techniques.

Keywords

Technology: general issues --- History of engineering & technology --- laser flow meter --- Pitot tube --- flow speed --- time of flight --- dilution method --- flow simulation --- flow turbulence --- gas sensing applications --- MEMS --- gas sensor --- photoacoustics --- cantilever --- capacitive detection --- analytic model --- infrared imaging --- multispectral and hyperspectral imaging --- air pollution monitoring --- remote sensing and sensors --- spectroscopy --- fourier transform --- image processing --- laser gas analyzer --- flux measurement --- eddy covariance method --- derivative absorption spectroscopy --- gas sensors --- antiresonant hollow core fibers --- laser spectroscopy --- wavelength modulation spectroscopy --- tunable diode laser absorption spectroscopy --- photothermal spectroscopy --- photoacoustic spectroscopy --- fiber gas sensors --- mid-infrared --- quantum cascade detector --- high-speed operation --- heterodyne detection --- high-resolution spectroscopy --- isotopic ratio --- frequency comb --- Vernier spectroscopy --- refractometry --- pressure --- short-term performance --- Fabry–Perot cavity --- gas modulation --- modulation techniques --- metrology --- integrated sensors --- waveguides --- absorption spectroscopy --- Raman spectroscopy --- gas sensing --- femtosecond laser micromachining --- microchannel fabrication --- microstructured fibers --- photoacoustic --- pressure transducer --- wafer-level --- CO2 --- combined NIR/MIR laser absorption --- laser multiplexing in a mid-IR single-mode fiber --- simultaneous multispecies (CO, CO2, H2O) in situ measurements


Book
Optical Gas Sensing: Media, Mechanisms and Applications
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Optical gas sensing is one of the fastest developing research areas in laser spectroscopy. Continuous development of new coherent light sources operating especially in the Mid-IR spectral band (QCL—Quantum Cascade Lasers, ICL—Interband Cascade Lasers, OPO—Optical Parametric Oscillator, DFG—Difference Frequency Generation, optical frequency combs, etc.) stimulates new, sophisticated methods and technological solutions in this area. The development of clever techniques in gas detection based on new mechanisms of sensing (photoacoustic, photothermal, dispersion, etc.) supported by advanced applied electronics and huge progress in signal processing allows us to introduce more sensitive, broader-band and miniaturized optical sensors. Additionally, the substantial development of fast and sensitive photodetectors in MIR and FIR is of great support to progress in gas sensing. Recent material and technological progress in the development of hollow-core optical fibers allowing low-loss transmission of light in both Near- and Mid-IR has opened a new route for obtaining the low-volume, long optical paths that are so strongly required in laser-based gas sensors, leading to the development of a novel branch of laser-based gas detectors. This Special Issue summarizes the most recent progress in the development of optical sensors utilizing novel materials and laser-based gas sensing techniques.

Keywords

laser flow meter --- Pitot tube --- flow speed --- time of flight --- dilution method --- flow simulation --- flow turbulence --- gas sensing applications --- MEMS --- gas sensor --- photoacoustics --- cantilever --- capacitive detection --- analytic model --- infrared imaging --- multispectral and hyperspectral imaging --- air pollution monitoring --- remote sensing and sensors --- spectroscopy --- fourier transform --- image processing --- laser gas analyzer --- flux measurement --- eddy covariance method --- derivative absorption spectroscopy --- gas sensors --- antiresonant hollow core fibers --- laser spectroscopy --- wavelength modulation spectroscopy --- tunable diode laser absorption spectroscopy --- photothermal spectroscopy --- photoacoustic spectroscopy --- fiber gas sensors --- mid-infrared --- quantum cascade detector --- high-speed operation --- heterodyne detection --- high-resolution spectroscopy --- isotopic ratio --- frequency comb --- Vernier spectroscopy --- refractometry --- pressure --- short-term performance --- Fabry–Perot cavity --- gas modulation --- modulation techniques --- metrology --- integrated sensors --- waveguides --- absorption spectroscopy --- Raman spectroscopy --- gas sensing --- femtosecond laser micromachining --- microchannel fabrication --- microstructured fibers --- photoacoustic --- pressure transducer --- wafer-level --- CO2 --- combined NIR/MIR laser absorption --- laser multiplexing in a mid-IR single-mode fiber --- simultaneous multispecies (CO, CO2, H2O) in situ measurements


Book
Optical Gas Sensing: Media, Mechanisms and Applications
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Optical gas sensing is one of the fastest developing research areas in laser spectroscopy. Continuous development of new coherent light sources operating especially in the Mid-IR spectral band (QCL—Quantum Cascade Lasers, ICL—Interband Cascade Lasers, OPO—Optical Parametric Oscillator, DFG—Difference Frequency Generation, optical frequency combs, etc.) stimulates new, sophisticated methods and technological solutions in this area. The development of clever techniques in gas detection based on new mechanisms of sensing (photoacoustic, photothermal, dispersion, etc.) supported by advanced applied electronics and huge progress in signal processing allows us to introduce more sensitive, broader-band and miniaturized optical sensors. Additionally, the substantial development of fast and sensitive photodetectors in MIR and FIR is of great support to progress in gas sensing. Recent material and technological progress in the development of hollow-core optical fibers allowing low-loss transmission of light in both Near- and Mid-IR has opened a new route for obtaining the low-volume, long optical paths that are so strongly required in laser-based gas sensors, leading to the development of a novel branch of laser-based gas detectors. This Special Issue summarizes the most recent progress in the development of optical sensors utilizing novel materials and laser-based gas sensing techniques.

Keywords

Technology: general issues --- History of engineering & technology --- laser flow meter --- Pitot tube --- flow speed --- time of flight --- dilution method --- flow simulation --- flow turbulence --- gas sensing applications --- MEMS --- gas sensor --- photoacoustics --- cantilever --- capacitive detection --- analytic model --- infrared imaging --- multispectral and hyperspectral imaging --- air pollution monitoring --- remote sensing and sensors --- spectroscopy --- fourier transform --- image processing --- laser gas analyzer --- flux measurement --- eddy covariance method --- derivative absorption spectroscopy --- gas sensors --- antiresonant hollow core fibers --- laser spectroscopy --- wavelength modulation spectroscopy --- tunable diode laser absorption spectroscopy --- photothermal spectroscopy --- photoacoustic spectroscopy --- fiber gas sensors --- mid-infrared --- quantum cascade detector --- high-speed operation --- heterodyne detection --- high-resolution spectroscopy --- isotopic ratio --- frequency comb --- Vernier spectroscopy --- refractometry --- pressure --- short-term performance --- Fabry–Perot cavity --- gas modulation --- modulation techniques --- metrology --- integrated sensors --- waveguides --- absorption spectroscopy --- Raman spectroscopy --- gas sensing --- femtosecond laser micromachining --- microchannel fabrication --- microstructured fibers --- photoacoustic --- pressure transducer --- wafer-level --- CO2 --- combined NIR/MIR laser absorption --- laser multiplexing in a mid-IR single-mode fiber --- simultaneous multispecies (CO, CO2, H2O) in situ measurements --- laser flow meter --- Pitot tube --- flow speed --- time of flight --- dilution method --- flow simulation --- flow turbulence --- gas sensing applications --- MEMS --- gas sensor --- photoacoustics --- cantilever --- capacitive detection --- analytic model --- infrared imaging --- multispectral and hyperspectral imaging --- air pollution monitoring --- remote sensing and sensors --- spectroscopy --- fourier transform --- image processing --- laser gas analyzer --- flux measurement --- eddy covariance method --- derivative absorption spectroscopy --- gas sensors --- antiresonant hollow core fibers --- laser spectroscopy --- wavelength modulation spectroscopy --- tunable diode laser absorption spectroscopy --- photothermal spectroscopy --- photoacoustic spectroscopy --- fiber gas sensors --- mid-infrared --- quantum cascade detector --- high-speed operation --- heterodyne detection --- high-resolution spectroscopy --- isotopic ratio --- frequency comb --- Vernier spectroscopy --- refractometry --- pressure --- short-term performance --- Fabry–Perot cavity --- gas modulation --- modulation techniques --- metrology --- integrated sensors --- waveguides --- absorption spectroscopy --- Raman spectroscopy --- gas sensing --- femtosecond laser micromachining --- microchannel fabrication --- microstructured fibers --- photoacoustic --- pressure transducer --- wafer-level --- CO2 --- combined NIR/MIR laser absorption --- laser multiplexing in a mid-IR single-mode fiber --- simultaneous multispecies (CO, CO2, H2O) in situ measurements


Book
Micro/Nano Manufacturing
Authors: ---
ISBN: 3039211706 3039211692 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Micro manufacturing involves dealing with the fabrication of structures in the size range of 0.1 to 1000 µm. The scope of nano manufacturing extends the size range of manufactured features to even smaller length scales—below 100 nm. A strict borderline between micro and nano manufacturing can hardly be drawn, such that both domains are treated as complementary and mutually beneficial within a closely interconnected scientific community. Both micro and nano manufacturing can be considered as important enablers for high-end products. This Special Issue of Applied Sciences is dedicated to recent advances in research and development within the field of micro and nano manufacturing. The included papers report recent findings and advances in manufacturing technologies for producing products with micro and nano scale features and structures as well as applications underpinned by the advances in these technologies.

Keywords

path adaptability --- uncertainty quantification --- hardening --- empirical mode decomposition --- microlens array mold --- gaussian process modeling --- multi-objective particle swarm optimization --- micro reactors --- XRD --- surface roughness --- water impermeability tests --- nanocone array --- additive manufacturing --- antireflection nanostructure --- ultraprecision machining --- Surface-enhanced Raman scattering --- micro stereolithography --- optical encoder --- micro assembly --- micro-optics --- nanosphere array --- micro-assembly --- injection molding --- Portland limestone ternary fiber–cement nanohybrids --- hot embossing --- deterministic polishing --- micro-lens array --- process parameter optimization --- TGA/dTG --- intrinsic mode function --- micro factories --- three-dimensional elliptical vibration cutting --- flow control --- micro-EDM molds --- Image segmentation --- micro actuators --- culture dish adapter --- flexural strength --- SERS --- low PC clinker --- MIP --- selective laser melting --- micro sensors --- friction coefficient --- design of experiments --- Ti6Al4V --- micro-spring --- contactless embossing --- micro and nano additive manufacturing --- Taguchi’s method --- nanoimprinting --- perfusion culture --- micro and nano manufacturing --- data structure --- fluid jet polishing --- nitrogen supersaturation --- spatial uncertainty modeling --- active alignment --- variable pitch path --- conceptual design --- feature extraction --- blaze --- micro-nozzle --- product development --- opto-ASIC --- wafer-level optics --- residual error optimization --- stiffness control --- surface engineering and interface nanotechnology --- design for manufacturability --- anodic aluminum oxide --- plasma nitriding --- micro 3D printing --- hydrophobicity --- grating --- micro-fluidics --- closed environment --- chatter identification --- small recess structure

Listing 1 - 7 of 7
Sort by