Narrow your search

Library

FARO (5)

KU Leuven (5)

LUCA School of Arts (5)

Odisee (5)

Thomas More Kempen (5)

Thomas More Mechelen (5)

UCLL (5)

ULB (5)

ULiège (5)

VIVES (5)

More...

Resource type

book (11)


Language

English (11)


Year
From To Submit

2022 (3)

2021 (6)

2019 (2)

Listing 1 - 10 of 11 << page
of 2
>>
Sort by

Book
Fluid Interfaces
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Fluid interfaces are promising candidates for confining different types of materials, e.g., polymers, surfactants, colloids, and even small molecules, to be used in designing new functional materials with reduced dimensionality. The development of such materials requires a deepening of the physicochemical bases underlying the formation of layers at fluid interfaces as well as on the characterization of their structures and properties. This is of particular importance because the constraints associated with the assembly of materials at the interface lead to the emergence of equilibrium and features of dynamics in the interfacial systems, which are far removed from those conventionally found in traditional materials. This Special Issue is devoted to studies on the fundamental and applied aspects of fluid interfaces, and attempts to provide a comprehensive perspective on the current status of the research field.

Keywords

Technology: general issues --- polyelectrolyte --- surfactants --- kinetically trapped aggregates --- interfaces --- surface tension --- interfacial dilational rheology --- adsorption --- nonlinear stretching sheet --- viscoelastic fluid --- MHD --- viscous dissipation --- underwater vehicle --- sea-water pump --- vibration isolation --- flexible pipes --- cationic surfactants --- Gemini 12-2-12 surfactant --- dynamic surface tension --- maximum bubble pressure --- surface potential --- nanofluid --- stretching surface --- rotating fluid --- Homotopy Analysis Method (HAM) --- porous media --- magnetohydrodynamics --- hybrid nanofluid --- stretching cylinder --- flow characteristics --- nanoparticles --- convective heat transfer --- interfacial tensions --- dilational rheology --- biocompatible emulsions --- partition coefficient --- Tween 80 --- saponin --- citronellol glucoside --- MCT oil --- Miglyol 812N --- lipids --- pollutants --- Langmuir monolayers --- particles --- rheology --- neutron reflectometry --- ellipsometry --- DPPC --- lipid monolayers --- air/water interface --- entropy --- second grade nanofluid --- Cattaneo-Christov heat flux model --- nonlinear thermal radiation --- Joule heating --- fluid displacement --- inverse Saffman–Taylor instability --- partially miscible --- Korteweg force --- gyrotactic microorganisms --- micropolar magnetohydrodynamics (MHD) --- Maxwell nanofluid --- single wall carbon nanotubes (SWCNTs) and multi wall carbon nanotubes (MWCNTs) --- thermal radiation --- chemical reaction --- mixed convection --- permeability --- confinement --- dynamics --- materials --- applications


Book
Fluid Interfaces
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Fluid interfaces are promising candidates for confining different types of materials, e.g., polymers, surfactants, colloids, and even small molecules, to be used in designing new functional materials with reduced dimensionality. The development of such materials requires a deepening of the physicochemical bases underlying the formation of layers at fluid interfaces as well as on the characterization of their structures and properties. This is of particular importance because the constraints associated with the assembly of materials at the interface lead to the emergence of equilibrium and features of dynamics in the interfacial systems, which are far removed from those conventionally found in traditional materials. This Special Issue is devoted to studies on the fundamental and applied aspects of fluid interfaces, and attempts to provide a comprehensive perspective on the current status of the research field.

Keywords

polyelectrolyte --- surfactants --- kinetically trapped aggregates --- interfaces --- surface tension --- interfacial dilational rheology --- adsorption --- nonlinear stretching sheet --- viscoelastic fluid --- MHD --- viscous dissipation --- underwater vehicle --- sea-water pump --- vibration isolation --- flexible pipes --- cationic surfactants --- Gemini 12-2-12 surfactant --- dynamic surface tension --- maximum bubble pressure --- surface potential --- nanofluid --- stretching surface --- rotating fluid --- Homotopy Analysis Method (HAM) --- porous media --- magnetohydrodynamics --- hybrid nanofluid --- stretching cylinder --- flow characteristics --- nanoparticles --- convective heat transfer --- interfacial tensions --- dilational rheology --- biocompatible emulsions --- partition coefficient --- Tween 80 --- saponin --- citronellol glucoside --- MCT oil --- Miglyol 812N --- lipids --- pollutants --- Langmuir monolayers --- particles --- rheology --- neutron reflectometry --- ellipsometry --- DPPC --- lipid monolayers --- air/water interface --- entropy --- second grade nanofluid --- Cattaneo-Christov heat flux model --- nonlinear thermal radiation --- Joule heating --- fluid displacement --- inverse Saffman–Taylor instability --- partially miscible --- Korteweg force --- gyrotactic microorganisms --- micropolar magnetohydrodynamics (MHD) --- Maxwell nanofluid --- single wall carbon nanotubes (SWCNTs) and multi wall carbon nanotubes (MWCNTs) --- thermal radiation --- chemical reaction --- mixed convection --- permeability --- confinement --- dynamics --- materials --- applications


Book
Micro/Nano-Chip Electrokinetics, Volume III
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Micro/nanofluidics-based lab-on-a-chip devices have found extensive applications in the analysis of chemical and biological samples over the past two decades. Electrokinetics is the method of choice in these micro/nano-chips for transporting, manipulating, and sensing various analyte species (e.g., ions, molecules, fluids, and particles). This book aims to highlight the recent developments in the field of micro/nano-chip electrokinetics, ranging from the fundamentals of electrokinetics to the applications of electrokinetics to both chemo- and bio-sample handling.

Keywords

History of engineering & technology --- electrokinetic micromixer --- induced-charge electroosmosis --- field-induced Debye screening --- AC field-effect flow control --- electrochemical ion relaxation --- Electroosmosis --- Power-law fluid --- Non-Newtonian fluid --- Asymmetric zeta potential --- organ-on-a-chip --- biosensors --- biomedical --- microfluidics --- in vivo models --- applications --- Microfilter --- Dielectrophoresis --- Particle separation, micropillar --- multi-layer structure --- electroosmotic flow (EOF) pump --- parallel fluid channels --- liquid metal electrodes --- microfluidic particle concentrator --- continuous and switchable particle flow-focusing --- composite electrode arrangement --- field-effect flow control --- multifrequency induced-charge electroosmosis --- simultaneous pumping and convective mixing --- dual-Fourier-mode AC forcing --- traveling-wave/standing-wave AC electroosmosis --- bacteriophage --- dielectrophoresis --- electric field --- electrophoresis --- electrokinetics --- virus --- time-periodic electroosmotic flow --- heterogeneous surface charge --- cylindrical microchannel --- stream function --- micro-mixing --- cross-membrane voltage --- ion concentration polarization --- desalination effect --- pump effect --- eddy current --- electroosmotic flow --- viscoelastic fluid --- nanofluidics --- ionic conductance --- electrical double layer --- droplet --- electrohydrodynamics --- phase field method --- non-uniform electric field --- Linear Phan-Thien-Tanner (LPTT) --- pH --- tunable focus --- liquid lens --- charge injection --- characterization --- carbon electrodes --- three-dimensional (3D) --- diagnostics --- Candidiasis --- electrokinetic micromixer --- induced-charge electroosmosis --- field-induced Debye screening --- AC field-effect flow control --- electrochemical ion relaxation --- Electroosmosis --- Power-law fluid --- Non-Newtonian fluid --- Asymmetric zeta potential --- organ-on-a-chip --- biosensors --- biomedical --- microfluidics --- in vivo models --- applications --- Microfilter --- Dielectrophoresis --- Particle separation, micropillar --- multi-layer structure --- electroosmotic flow (EOF) pump --- parallel fluid channels --- liquid metal electrodes --- microfluidic particle concentrator --- continuous and switchable particle flow-focusing --- composite electrode arrangement --- field-effect flow control --- multifrequency induced-charge electroosmosis --- simultaneous pumping and convective mixing --- dual-Fourier-mode AC forcing --- traveling-wave/standing-wave AC electroosmosis --- bacteriophage --- dielectrophoresis --- electric field --- electrophoresis --- electrokinetics --- virus --- time-periodic electroosmotic flow --- heterogeneous surface charge --- cylindrical microchannel --- stream function --- micro-mixing --- cross-membrane voltage --- ion concentration polarization --- desalination effect --- pump effect --- eddy current --- electroosmotic flow --- viscoelastic fluid --- nanofluidics --- ionic conductance --- electrical double layer --- droplet --- electrohydrodynamics --- phase field method --- non-uniform electric field --- Linear Phan-Thien-Tanner (LPTT) --- pH --- tunable focus --- liquid lens --- charge injection --- characterization --- carbon electrodes --- three-dimensional (3D) --- diagnostics --- Candidiasis


Book
Fluid Interfaces
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Fluid interfaces are promising candidates for confining different types of materials, e.g., polymers, surfactants, colloids, and even small molecules, to be used in designing new functional materials with reduced dimensionality. The development of such materials requires a deepening of the physicochemical bases underlying the formation of layers at fluid interfaces as well as on the characterization of their structures and properties. This is of particular importance because the constraints associated with the assembly of materials at the interface lead to the emergence of equilibrium and features of dynamics in the interfacial systems, which are far removed from those conventionally found in traditional materials. This Special Issue is devoted to studies on the fundamental and applied aspects of fluid interfaces, and attempts to provide a comprehensive perspective on the current status of the research field.

Keywords

Technology: general issues --- polyelectrolyte --- surfactants --- kinetically trapped aggregates --- interfaces --- surface tension --- interfacial dilational rheology --- adsorption --- nonlinear stretching sheet --- viscoelastic fluid --- MHD --- viscous dissipation --- underwater vehicle --- sea-water pump --- vibration isolation --- flexible pipes --- cationic surfactants --- Gemini 12-2-12 surfactant --- dynamic surface tension --- maximum bubble pressure --- surface potential --- nanofluid --- stretching surface --- rotating fluid --- Homotopy Analysis Method (HAM) --- porous media --- magnetohydrodynamics --- hybrid nanofluid --- stretching cylinder --- flow characteristics --- nanoparticles --- convective heat transfer --- interfacial tensions --- dilational rheology --- biocompatible emulsions --- partition coefficient --- Tween 80 --- saponin --- citronellol glucoside --- MCT oil --- Miglyol 812N --- lipids --- pollutants --- Langmuir monolayers --- particles --- rheology --- neutron reflectometry --- ellipsometry --- DPPC --- lipid monolayers --- air/water interface --- entropy --- second grade nanofluid --- Cattaneo-Christov heat flux model --- nonlinear thermal radiation --- Joule heating --- fluid displacement --- inverse Saffman–Taylor instability --- partially miscible --- Korteweg force --- gyrotactic microorganisms --- micropolar magnetohydrodynamics (MHD) --- Maxwell nanofluid --- single wall carbon nanotubes (SWCNTs) and multi wall carbon nanotubes (MWCNTs) --- thermal radiation --- chemical reaction --- mixed convection --- permeability --- confinement --- dynamics --- materials --- applications --- polyelectrolyte --- surfactants --- kinetically trapped aggregates --- interfaces --- surface tension --- interfacial dilational rheology --- adsorption --- nonlinear stretching sheet --- viscoelastic fluid --- MHD --- viscous dissipation --- underwater vehicle --- sea-water pump --- vibration isolation --- flexible pipes --- cationic surfactants --- Gemini 12-2-12 surfactant --- dynamic surface tension --- maximum bubble pressure --- surface potential --- nanofluid --- stretching surface --- rotating fluid --- Homotopy Analysis Method (HAM) --- porous media --- magnetohydrodynamics --- hybrid nanofluid --- stretching cylinder --- flow characteristics --- nanoparticles --- convective heat transfer --- interfacial tensions --- dilational rheology --- biocompatible emulsions --- partition coefficient --- Tween 80 --- saponin --- citronellol glucoside --- MCT oil --- Miglyol 812N --- lipids --- pollutants --- Langmuir monolayers --- particles --- rheology --- neutron reflectometry --- ellipsometry --- DPPC --- lipid monolayers --- air/water interface --- entropy --- second grade nanofluid --- Cattaneo-Christov heat flux model --- nonlinear thermal radiation --- Joule heating --- fluid displacement --- inverse Saffman–Taylor instability --- partially miscible --- Korteweg force --- gyrotactic microorganisms --- micropolar magnetohydrodynamics (MHD) --- Maxwell nanofluid --- single wall carbon nanotubes (SWCNTs) and multi wall carbon nanotubes (MWCNTs) --- thermal radiation --- chemical reaction --- mixed convection --- permeability --- confinement --- dynamics --- materials --- applications


Book
Non-Newtonian Microfluidics
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Microfluidics has seen a remarkable growth over recent decades, with its extensive applications in engineering, medicine, biology, chemistry, etc. Many of these real applications of microfluidics involve the handling of complex fluids, such as whole blood, protein solutions, and polymeric solutions, which exhibit non-Newtonian characteristics—specifically viscoelasticity. The elasticity of the non-Newtonian fluids induces intriguing phenomena, such as elastic instability and turbulence, even at extremely low Reynolds numbers. This is the consequence of the nonlinear nature of the rheological constitutive equations. The nonlinear characteristic of non-Newtonian fluids can dramatically change the flow dynamics, and is useful to enhance mixing at the microscale. Electrokinetics in the context of non-Newtonian fluids are also of significant importance, with their potential applications in micromixing enhancement and bio-particles manipulation and separation. In this Special Issue, we welcomed research papers, and review articles related to the applications, fundamentals, design, and the underlying mechanisms of non-Newtonian microfluidics, including discussions, analytical papers, and numerical and/or experimental analyses.

Keywords

Technology: general issues --- History of engineering & technology --- microfluidics --- Janus droplet --- OpenFOAM --- volume of fluid method --- adaptive dynamic mesh refinement --- shear-thinning fluid --- electroosmosis --- elastic instability --- non-Newtonian fluid --- Oldroyd-B model --- electroosmotic flow --- micromixing performance --- heterogeneous surface potential --- wall obstacle --- power-law fluid --- bvp4c --- RK4 technique --- brownian motion --- porous rotating disk --- maxwell nanofluid --- thermally radiative fluid --- von karman transformation --- hybrid nanofluid --- entropy generation --- induced magnetic field --- convective boundary conditions --- thermal radiations --- stretching disk --- viscoelastic material --- group similarity analysis --- thermal relaxation time --- parametric investigation --- variable magnetic field --- error analysis --- viscoelastic fluid --- microfluid --- direction-dependent --- viscous dissipation --- chemical reaction --- finite element procedure --- hybrid nanoparticles --- heat and mass transfer rates --- joule heating --- tri-hybrid nanoparticles --- Soret and Dufour effect --- boundary layer analysis --- finite element scheme --- heat generation --- constructive and destructive chemical reaction --- particle separation --- viscoelastic flow --- inertial focusing --- spiral channel --- transient two-layer flow --- power-law nanofluid --- heat transfer --- Laplace transform --- nanoparticle volume fraction --- effective thermal conductivity --- fractal scaling --- Monte Carlo --- porous media --- power-law model --- bioheat equation --- human body --- droplet deformation --- viscoelasticity --- wettable surface --- dielectric field --- droplet migration --- wettability gradient --- microfluidics --- Janus droplet --- OpenFOAM --- volume of fluid method --- adaptive dynamic mesh refinement --- shear-thinning fluid --- electroosmosis --- elastic instability --- non-Newtonian fluid --- Oldroyd-B model --- electroosmotic flow --- micromixing performance --- heterogeneous surface potential --- wall obstacle --- power-law fluid --- bvp4c --- RK4 technique --- brownian motion --- porous rotating disk --- maxwell nanofluid --- thermally radiative fluid --- von karman transformation --- hybrid nanofluid --- entropy generation --- induced magnetic field --- convective boundary conditions --- thermal radiations --- stretching disk --- viscoelastic material --- group similarity analysis --- thermal relaxation time --- parametric investigation --- variable magnetic field --- error analysis --- viscoelastic fluid --- microfluid --- direction-dependent --- viscous dissipation --- chemical reaction --- finite element procedure --- hybrid nanoparticles --- heat and mass transfer rates --- joule heating --- tri-hybrid nanoparticles --- Soret and Dufour effect --- boundary layer analysis --- finite element scheme --- heat generation --- constructive and destructive chemical reaction --- particle separation --- viscoelastic flow --- inertial focusing --- spiral channel --- transient two-layer flow --- power-law nanofluid --- heat transfer --- Laplace transform --- nanoparticle volume fraction --- effective thermal conductivity --- fractal scaling --- Monte Carlo --- porous media --- power-law model --- bioheat equation --- human body --- droplet deformation --- viscoelasticity --- wettable surface --- dielectric field --- droplet migration --- wettability gradient


Book
Non-Newtonian Microfluidics
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Microfluidics has seen a remarkable growth over recent decades, with its extensive applications in engineering, medicine, biology, chemistry, etc. Many of these real applications of microfluidics involve the handling of complex fluids, such as whole blood, protein solutions, and polymeric solutions, which exhibit non-Newtonian characteristics—specifically viscoelasticity. The elasticity of the non-Newtonian fluids induces intriguing phenomena, such as elastic instability and turbulence, even at extremely low Reynolds numbers. This is the consequence of the nonlinear nature of the rheological constitutive equations. The nonlinear characteristic of non-Newtonian fluids can dramatically change the flow dynamics, and is useful to enhance mixing at the microscale. Electrokinetics in the context of non-Newtonian fluids are also of significant importance, with their potential applications in micromixing enhancement and bio-particles manipulation and separation. In this Special Issue, we welcomed research papers, and review articles related to the applications, fundamentals, design, and the underlying mechanisms of non-Newtonian microfluidics, including discussions, analytical papers, and numerical and/or experimental analyses.

Keywords

Technology: general issues --- History of engineering & technology --- microfluidics --- Janus droplet --- OpenFOAM --- volume of fluid method --- adaptive dynamic mesh refinement --- shear-thinning fluid --- electroosmosis --- elastic instability --- non-Newtonian fluid --- Oldroyd-B model --- electroosmotic flow --- micromixing performance --- heterogeneous surface potential --- wall obstacle --- power-law fluid --- bvp4c --- RK4 technique --- brownian motion --- porous rotating disk --- maxwell nanofluid --- thermally radiative fluid --- von karman transformation --- hybrid nanofluid --- entropy generation --- induced magnetic field --- convective boundary conditions --- thermal radiations --- stretching disk --- viscoelastic material --- group similarity analysis --- thermal relaxation time --- parametric investigation --- variable magnetic field --- error analysis --- viscoelastic fluid --- microfluid --- direction-dependent --- viscous dissipation --- chemical reaction --- finite element procedure --- hybrid nanoparticles --- heat and mass transfer rates --- joule heating --- tri-hybrid nanoparticles --- Soret and Dufour effect --- boundary layer analysis --- finite element scheme --- heat generation --- constructive and destructive chemical reaction --- particle separation --- viscoelastic flow --- inertial focusing --- spiral channel --- transient two-layer flow --- power-law nanofluid --- heat transfer --- Laplace transform --- nanoparticle volume fraction --- effective thermal conductivity --- fractal scaling --- Monte Carlo --- porous media --- power-law model --- bioheat equation --- human body --- droplet deformation --- viscoelasticity --- wettable surface --- dielectric field --- droplet migration --- wettability gradient --- n/a


Book
Micro/Nano-Chip Electrokinetics, Volume III
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Micro/nanofluidics-based lab-on-a-chip devices have found extensive applications in the analysis of chemical and biological samples over the past two decades. Electrokinetics is the method of choice in these micro/nano-chips for transporting, manipulating, and sensing various analyte species (e.g., ions, molecules, fluids, and particles). This book aims to highlight the recent developments in the field of micro/nano-chip electrokinetics, ranging from the fundamentals of electrokinetics to the applications of electrokinetics to both chemo- and bio-sample handling.

Keywords

History of engineering & technology --- electrokinetic micromixer --- induced-charge electroosmosis --- field-induced Debye screening --- AC field-effect flow control --- electrochemical ion relaxation --- Electroosmosis --- Power-law fluid --- Non-Newtonian fluid --- Asymmetric zeta potential --- organ-on-a-chip --- biosensors --- biomedical --- microfluidics --- in vivo models --- applications --- Microfilter --- Dielectrophoresis --- Particle separation, micropillar --- multi-layer structure --- electroosmotic flow (EOF) pump --- parallel fluid channels --- liquid metal electrodes --- microfluidic particle concentrator --- continuous and switchable particle flow-focusing --- composite electrode arrangement --- field-effect flow control --- multifrequency induced-charge electroosmosis --- simultaneous pumping and convective mixing --- dual-Fourier-mode AC forcing --- traveling-wave/standing-wave AC electroosmosis --- bacteriophage --- dielectrophoresis --- electric field --- electrophoresis --- electrokinetics --- virus --- time-periodic electroosmotic flow --- heterogeneous surface charge --- cylindrical microchannel --- stream function --- micro-mixing --- cross-membrane voltage --- ion concentration polarization --- desalination effect --- pump effect --- eddy current --- electroosmotic flow --- viscoelastic fluid --- nanofluidics --- ionic conductance --- electrical double layer --- droplet --- electrohydrodynamics --- phase field method --- non-uniform electric field --- Linear Phan-Thien–Tanner (LPTT) --- pH --- tunable focus --- liquid lens --- charge injection --- characterization --- carbon electrodes --- three-dimensional (3D) --- diagnostics --- Candidiasis --- n/a --- Linear Phan-Thien-Tanner (LPTT)


Book
Micro/Nano-Chip Electrokinetics, Volume III
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Micro/nanofluidics-based lab-on-a-chip devices have found extensive applications in the analysis of chemical and biological samples over the past two decades. Electrokinetics is the method of choice in these micro/nano-chips for transporting, manipulating, and sensing various analyte species (e.g., ions, molecules, fluids, and particles). This book aims to highlight the recent developments in the field of micro/nano-chip electrokinetics, ranging from the fundamentals of electrokinetics to the applications of electrokinetics to both chemo- and bio-sample handling.

Keywords

electrokinetic micromixer --- induced-charge electroosmosis --- field-induced Debye screening --- AC field-effect flow control --- electrochemical ion relaxation --- Electroosmosis --- Power-law fluid --- Non-Newtonian fluid --- Asymmetric zeta potential --- organ-on-a-chip --- biosensors --- biomedical --- microfluidics --- in vivo models --- applications --- Microfilter --- Dielectrophoresis --- Particle separation, micropillar --- multi-layer structure --- electroosmotic flow (EOF) pump --- parallel fluid channels --- liquid metal electrodes --- microfluidic particle concentrator --- continuous and switchable particle flow-focusing --- composite electrode arrangement --- field-effect flow control --- multifrequency induced-charge electroosmosis --- simultaneous pumping and convective mixing --- dual-Fourier-mode AC forcing --- traveling-wave/standing-wave AC electroosmosis --- bacteriophage --- dielectrophoresis --- electric field --- electrophoresis --- electrokinetics --- virus --- time-periodic electroosmotic flow --- heterogeneous surface charge --- cylindrical microchannel --- stream function --- micro-mixing --- cross-membrane voltage --- ion concentration polarization --- desalination effect --- pump effect --- eddy current --- electroosmotic flow --- viscoelastic fluid --- nanofluidics --- ionic conductance --- electrical double layer --- droplet --- electrohydrodynamics --- phase field method --- non-uniform electric field --- Linear Phan-Thien–Tanner (LPTT) --- pH --- tunable focus --- liquid lens --- charge injection --- characterization --- carbon electrodes --- three-dimensional (3D) --- diagnostics --- Candidiasis --- n/a --- Linear Phan-Thien-Tanner (LPTT)


Book
Non-Newtonian Microfluidics
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Microfluidics has seen a remarkable growth over recent decades, with its extensive applications in engineering, medicine, biology, chemistry, etc. Many of these real applications of microfluidics involve the handling of complex fluids, such as whole blood, protein solutions, and polymeric solutions, which exhibit non-Newtonian characteristics—specifically viscoelasticity. The elasticity of the non-Newtonian fluids induces intriguing phenomena, such as elastic instability and turbulence, even at extremely low Reynolds numbers. This is the consequence of the nonlinear nature of the rheological constitutive equations. The nonlinear characteristic of non-Newtonian fluids can dramatically change the flow dynamics, and is useful to enhance mixing at the microscale. Electrokinetics in the context of non-Newtonian fluids are also of significant importance, with their potential applications in micromixing enhancement and bio-particles manipulation and separation. In this Special Issue, we welcomed research papers, and review articles related to the applications, fundamentals, design, and the underlying mechanisms of non-Newtonian microfluidics, including discussions, analytical papers, and numerical and/or experimental analyses.

Keywords

microfluidics --- Janus droplet --- OpenFOAM --- volume of fluid method --- adaptive dynamic mesh refinement --- shear-thinning fluid --- electroosmosis --- elastic instability --- non-Newtonian fluid --- Oldroyd-B model --- electroosmotic flow --- micromixing performance --- heterogeneous surface potential --- wall obstacle --- power-law fluid --- bvp4c --- RK4 technique --- brownian motion --- porous rotating disk --- maxwell nanofluid --- thermally radiative fluid --- von karman transformation --- hybrid nanofluid --- entropy generation --- induced magnetic field --- convective boundary conditions --- thermal radiations --- stretching disk --- viscoelastic material --- group similarity analysis --- thermal relaxation time --- parametric investigation --- variable magnetic field --- error analysis --- viscoelastic fluid --- microfluid --- direction-dependent --- viscous dissipation --- chemical reaction --- finite element procedure --- hybrid nanoparticles --- heat and mass transfer rates --- joule heating --- tri-hybrid nanoparticles --- Soret and Dufour effect --- boundary layer analysis --- finite element scheme --- heat generation --- constructive and destructive chemical reaction --- particle separation --- viscoelastic flow --- inertial focusing --- spiral channel --- transient two-layer flow --- power-law nanofluid --- heat transfer --- Laplace transform --- nanoparticle volume fraction --- effective thermal conductivity --- fractal scaling --- Monte Carlo --- porous media --- power-law model --- bioheat equation --- human body --- droplet deformation --- viscoelasticity --- wettable surface --- dielectric field --- droplet migration --- wettability gradient --- n/a


Book
Fluid Flow in Fractured Porous Media,
Authors: ---
ISBN: 3039214748 303921473X Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The fluid flow in fracture porous media plays a significant role in the assessment of deep underground reservoirs, such as through CO2 sequestration, enhanced oil recovery, and geothermal energy development. Many methods have been employed—from laboratory experimentation to theoretical analysis and numerical simulations—and allowed for many useful conclusions. This Special Issue aims to report on the current advances related to this topic. This collection of 58 papers represents a wide variety of topics, including on granite permeability investigation, grouting, coal mining, roadway, and concrete, to name but a few. We sincerely hope that the papers published in this Special Issue will be an invaluable resource for our readers.

Keywords

deformation feature --- minerals --- microstructure --- mixing --- permeability --- gas concentration --- water–rock interaction --- loose gangue backfill material --- unified pipe-network method --- fracture --- roof-cutting resistance --- crack --- similar-material --- movable fluid --- gob-side entry retaining (GER) --- rock-soil mechanics --- bed separation --- orthogonal tests --- charge separation --- water soaked height --- fluid flow in reclaimed soil --- laboratory experiment --- longwall mining --- grading broken gangue --- MIP --- elastic modulus --- effective stress --- permeability coefficient --- mixer --- naturally fracture --- SEM --- microstructure characteristics --- artificial joint rock --- fractured rock --- strata movement --- conservative solute --- particle velocity --- dry-wet cycles --- hydraulic fractures --- numerical calculation --- mechanical behaviors --- normalized conductivity-influence function --- fractured porous rock mass --- PPCZ --- segmented grouting --- non-aqueous phase liquid --- intelligent torque rheometer --- numerical analysis --- temperature --- unsaturated soil --- uniaxial compressive strength --- mine shaft --- coalbed methane (CBM) --- nonlinear flow in fractured porous media --- similar simulation --- forecasting --- tight sandstones --- oriented perforation --- hydro-mechanical coupling --- constant normal stiffness conditions --- cohesive soils --- layered progressive grouting --- chemical grouts --- grain size of sand --- Darcy’s law --- soft coal masses --- hydro-power --- cyclic heating and cooling --- cohesive element method --- cement-based paste discharge --- tectonically deformed coal --- split grouting --- fault water inrush --- filtration effects --- T-stress --- particle flow modeling --- new cementitious material --- strength --- stabilization --- fractured porous medium --- brine concentration --- initial water contained in sand --- XRD --- fracture criteria --- hydraulic conductivity --- roadway deformation --- backfill mining --- adsorption/desorption properties --- pore pressure --- roughness --- cement–silicate grout --- compressive stress --- discrete element method --- dynamic characteristics --- strain-based percolation model --- thermal-hydrological-chemical interactions --- pore distribution characteristics --- transversely isotropic rocks --- nitric acid modification --- disaster-causing mechanism --- CH4 seepage --- crack distribution characteristics --- micro-CT --- relief excavation --- Darcy flow --- hydraulic fracturing --- mixed-form formulation --- propagation --- scanning electron microscope (SEM) images --- propagation pattern --- consolidation process --- rheological deformation --- gas adsorption --- soft filling medium --- ground pressure --- orthogonal ratio test --- rock fracture --- coal seams --- high-steep slope --- interface --- orthogonal test --- stress interference --- physical and mechanical parameters --- fracture propagation --- fluid–solid coupling theory --- coupling model --- surface characteristics --- numerical manifold method --- gas --- lignite --- water inrush prevention --- coupled THM model --- hard and thick magmatic rocks --- Ordos Basin --- porosity --- damage mechanics --- seepage --- degradation mechanism --- high temperature --- visualization system --- bentonite-sand mixtures --- contamination --- conductivity-influence function --- water-rock interaction --- deterioration --- seepage pressure --- glutenite --- adhesion efficiency --- mechanical behavior transition --- bedding plane orientation --- n/a --- enhanced gas recovery --- debris-resisting barriers --- reinforcement mechanism --- on-site monitoring --- geophysical prospecting --- cyclic wetting-drying --- scoops3D --- semi-analytical solution --- enhanced permeability --- management period --- seepage control --- deformation --- Yellow River Embankment --- impeded drainage boundary --- rheological test --- circular closed reservoir --- grout penetration --- viscoelastic fluid --- coal-like material --- paste-like slurry --- floor failure depth --- supercritical CO2 --- gravel --- numerical model --- fractal --- gas-bearing coal --- shear-flow coupled test --- rheological limit strain --- CO2 flooding --- flotation --- goaf --- slope stability --- damage --- coal and gas outburst --- hydraulic fracture --- anisotropy --- high-order --- effluents --- FLAC --- limestone roof --- sandstone --- TG/DTG --- Xinjiang --- two-phase flow --- model experiment --- coal particle --- volumetric strain --- failure mode --- land reclamation --- sandstone and mudstone particles --- contiguous seams --- CO2 geological storage --- numerical simulation --- geogrid --- stress relief --- optimum proportioning --- roadside backfill body (RBB) --- pervious concrete --- mudstone --- hydraulic fracture network --- grouted sand --- fractal pore characteristics --- refraction law --- segmented rheological model --- ductile failure --- heterogeneity --- flow law --- fracture closure --- coal measures sandstone --- tight sandstone gas reservoirs --- gob behaviors --- water-dripping roadway --- creep characteristics --- internal erosion --- warning levels of fault water inrush --- hydraulic aperture --- bolt support --- discontinuous natural fracture --- microscopic morphology --- critical hydraulic gradient --- mixed mode fracture resistance --- differential settlement --- alternate strata --- finite element method --- crushing ratio --- chloride --- glauberite cavern for storing oil &amp --- macroscopic mechanical behaviors --- collision angle --- adsorption performance --- failure mechanism --- mechanical properties --- transmissivity --- damage evolution --- gas fracturing --- multitude parameters --- deviatoric stress --- Jiaohe --- coal --- soil properties --- acoustic emission --- pore structure --- grouting experiment --- concrete --- confining pressures --- green mining --- gas drainage --- fluid viscosity --- compression deformation --- Unsaturation --- adsorption–desorption --- seepage-creep --- constitutive model --- soil particle size --- Pseudo Steady-State (PPS) constant --- soil–structure interface --- debris flow --- fracture grouting --- initial settlement position --- regression equation --- electrical potential --- secondary fracture --- surrounding rock --- solid backfill coal mining --- time variation --- excess pore-pressures --- finite-conductivity fracture --- permeability characteristics --- rainfall-unstable soil coupling mechanism(R-USCM) --- shaft lining --- Darcy's law --- cement-silicate grout --- fluid-solid coupling theory --- adsorption-desorption --- soil-structure interface

Listing 1 - 10 of 11 << page
of 2
>>
Sort by