Narrow your search

Library

FARO (5)

KU Leuven (5)

LUCA School of Arts (5)

Odisee (5)

Thomas More Kempen (5)

Thomas More Mechelen (5)

UCLL (5)

ULiège (5)

VIVES (5)

Vlaams Parlement (5)

More...

Resource type

book (13)


Language

English (13)


Year
From To Submit

2021 (5)

2020 (3)

2019 (5)

Listing 1 - 10 of 13 << page
of 2
>>
Sort by

Book
Thermal and Electro-thermal System Simulation 2020
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book, edited by Prof. Marta Rencz and Prof Andras Poppe, Budapest University of Technology and Economics, and by Prof. Lorenzo Codecasa, Politecnico di Milano, collects fourteen papers carefully selected for the “thermal and electro-thermal system simulation” Special Issue of Energies. These contributions present the latest results in a currently very “hot” topic in electronics: the thermal and electro-thermal simulation of electronic components and systems. Several papers here proposed have turned out to be extended versions of papers presented at THERMINIC 2019, which was one of the 2019 stages of choice for presenting outstanding contributions on thermal and electro-thermal simulation of electronic systems. The papers proposed to the thermal community in this book deal with modeling and simulation of state-of-the-art applications which are highly critical from the thermal point of view, and around which there is great research activity in both industry and academia. In particular, contributions are proposed on the multi-physics simulation of families of electronic packages, multi-physics advanced modeling in power electronics, multiphysics modeling and simulation of LEDs, batteries and other micro and nano-structures.

Keywords

History of engineering & technology --- lithium-ion battery --- thermal modelling --- electro-thermal model --- heat generation --- experimental validation --- thermal transient testing --- non-destructive testing --- thermal testability --- accuracy repeatability and reproducibility of thermal measurements --- thermal testing standards --- 3D IC --- microchannels --- liquid cooling --- compact thermal model --- thermal simulation --- hotspot --- thermal-aware task scheduling --- DVFS --- statistical analysis --- electronic packages --- detailed thermal model --- Joint Electron Device Engineering Council (JEDEC) metrics --- thermal impedance --- AlGaN-GaN HEMT --- TDTR --- thermal conductivity --- thermal interface resistance --- size effect --- phonon transport mechanisms --- nonlinear thermal model --- SPICE --- pulse transformer --- thermal phenomena --- self-heating --- modelling --- measurements --- BCI-DCTM --- ROM --- modal approach --- BGA --- module temperature --- solar energy --- heat transfer mechanisms --- power LED measurement and simulation --- life testing --- reliability testing --- LM-80 --- TM-21 --- LED lifetime modelling --- LED multi-domain modelling --- Spice-like modelling of LEDs --- lifetime extrapolation and modelling of LEDs --- beyond CMOS --- VO2 --- thermal-electronic circuits --- electro-thermal simulation --- vertical structure --- power LEDs --- thermal pads --- thermal resistance --- optical efficiency --- electronics cooling --- Light-emitting diodes --- CoB LEDs --- multi-domain modeling --- finite volume method --- phosphor modeling --- magnetic nanoparticle --- microfluidics --- CFD --- OpenFOAM --- two-phase solver --- rheology --- LED --- Delphi4LED --- digital twin --- digital luminaire design --- computation time --- Industry 4.0 --- lithium-ion battery --- thermal modelling --- electro-thermal model --- heat generation --- experimental validation --- thermal transient testing --- non-destructive testing --- thermal testability --- accuracy repeatability and reproducibility of thermal measurements --- thermal testing standards --- 3D IC --- microchannels --- liquid cooling --- compact thermal model --- thermal simulation --- hotspot --- thermal-aware task scheduling --- DVFS --- statistical analysis --- electronic packages --- detailed thermal model --- Joint Electron Device Engineering Council (JEDEC) metrics --- thermal impedance --- AlGaN-GaN HEMT --- TDTR --- thermal conductivity --- thermal interface resistance --- size effect --- phonon transport mechanisms --- nonlinear thermal model --- SPICE --- pulse transformer --- thermal phenomena --- self-heating --- modelling --- measurements --- BCI-DCTM --- ROM --- modal approach --- BGA --- module temperature --- solar energy --- heat transfer mechanisms --- power LED measurement and simulation --- life testing --- reliability testing --- LM-80 --- TM-21 --- LED lifetime modelling --- LED multi-domain modelling --- Spice-like modelling of LEDs --- lifetime extrapolation and modelling of LEDs --- beyond CMOS --- VO2 --- thermal-electronic circuits --- electro-thermal simulation --- vertical structure --- power LEDs --- thermal pads --- thermal resistance --- optical efficiency --- electronics cooling --- Light-emitting diodes --- CoB LEDs --- multi-domain modeling --- finite volume method --- phosphor modeling --- magnetic nanoparticle --- microfluidics --- CFD --- OpenFOAM --- two-phase solver --- rheology --- LED --- Delphi4LED --- digital twin --- digital luminaire design --- computation time --- Industry 4.0


Book
Nanostructured Light-Emitters
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Significant progress has been made in nanophotonics and the use of nanostructured materials for optoelectronic devices, including light-emitting diodes (LEDs) and laser diodes, which have recently attracted considerable attention due to their unique geometry. Nanostructures in small dimensions, comprising nanowires, nanotubes, and nanoparticles, etc,. can be perfectly integrated into a variety of technological platforms, offering novel physical and chemical properties for high-performance, light-emitting devices. This Special Issue aims to present the most recent advances in the field of nanophotonics, which focuses on LEDs and laser diodes. We invite contributions of original research articles, as well as review articles that are aligned to the following topics that include, but are not limited to, thetheoretical calculation, synthesis, characterization, and application of such novel nanostructures for light-emitting devices. The application of nanostructured light-emitters in general lighting, imaging, and displays is also highly encouraged.

Keywords

History of engineering & technology --- Liquid phase deposition method --- InGaN/GaN light-emitting diode --- silver nanoparticle --- zinc oxide --- localized surface plasmon --- β-Ga2O3 --- III-Nitrides --- monoclinic --- hexagonal arrangement --- high-power --- current distribution --- vertical structure LED --- blue organic light emitting diodes --- transport materials --- host-dopant --- nanoparticles --- luminescence --- non-stoichiometric ZnxAgyInS1.5+x+0.5y nanocrystals --- photoluminescence properties --- tunable fluorescence emission --- one-pot approach --- perovskite light-emitting diodes --- three-step spin coating --- hole transport layer --- PEDOT:PSS/MoO3-ammonia composite --- μLED displays --- μLEDs --- GaN nanowires --- core-shell structure --- ultraviolet (UV) emitter --- surface plasmon --- Pt nanoparticles --- hole-pattern --- photon emission efficiency --- distributed Bragg reflectors --- gratings --- GaN-based lasers --- linewidth --- epsilon-near-zero --- wideband absorber --- plasmon mode --- Brewster mode --- visible light communication --- photonic crystals --- flip-chip LED --- Purcell effect --- light extraction efficiency --- nanostructured materials --- surface/interface properties --- nanostructured light-emitting devices --- physical mechanism --- surface/interface modification --- surface/interface control --- micro-scale light emitting diode --- sapphire substrate --- encapsulation --- compound semiconductor --- nanostructure --- ultraviolet --- light-emitting diode (LED) --- molecular beam epitaxy --- GaN --- AlN --- photonic nanojet --- photonic nanojet array --- self-assembly --- template-assisted self-assembly --- patterning efficiency --- III-nitride thin film --- nanostructures --- ultraviolet emitters --- surface passivation --- luminescence intensity --- Liquid phase deposition method --- InGaN/GaN light-emitting diode --- silver nanoparticle --- zinc oxide --- localized surface plasmon --- β-Ga2O3 --- III-Nitrides --- monoclinic --- hexagonal arrangement --- high-power --- current distribution --- vertical structure LED --- blue organic light emitting diodes --- transport materials --- host-dopant --- nanoparticles --- luminescence --- non-stoichiometric ZnxAgyInS1.5+x+0.5y nanocrystals --- photoluminescence properties --- tunable fluorescence emission --- one-pot approach --- perovskite light-emitting diodes --- three-step spin coating --- hole transport layer --- PEDOT:PSS/MoO3-ammonia composite --- μLED displays --- μLEDs --- GaN nanowires --- core-shell structure --- ultraviolet (UV) emitter --- surface plasmon --- Pt nanoparticles --- hole-pattern --- photon emission efficiency --- distributed Bragg reflectors --- gratings --- GaN-based lasers --- linewidth --- epsilon-near-zero --- wideband absorber --- plasmon mode --- Brewster mode --- visible light communication --- photonic crystals --- flip-chip LED --- Purcell effect --- light extraction efficiency --- nanostructured materials --- surface/interface properties --- nanostructured light-emitting devices --- physical mechanism --- surface/interface modification --- surface/interface control --- micro-scale light emitting diode --- sapphire substrate --- encapsulation --- compound semiconductor --- nanostructure --- ultraviolet --- light-emitting diode (LED) --- molecular beam epitaxy --- GaN --- AlN --- photonic nanojet --- photonic nanojet array --- self-assembly --- template-assisted self-assembly --- patterning efficiency --- III-nitride thin film --- nanostructures --- ultraviolet emitters --- surface passivation --- luminescence intensity


Book
Thermal and Electro-thermal System Simulation 2020
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book, edited by Prof. Marta Rencz and Prof Andras Poppe, Budapest University of Technology and Economics, and by Prof. Lorenzo Codecasa, Politecnico di Milano, collects fourteen papers carefully selected for the “thermal and electro-thermal system simulation” Special Issue of Energies. These contributions present the latest results in a currently very “hot” topic in electronics: the thermal and electro-thermal simulation of electronic components and systems. Several papers here proposed have turned out to be extended versions of papers presented at THERMINIC 2019, which was one of the 2019 stages of choice for presenting outstanding contributions on thermal and electro-thermal simulation of electronic systems. The papers proposed to the thermal community in this book deal with modeling and simulation of state-of-the-art applications which are highly critical from the thermal point of view, and around which there is great research activity in both industry and academia. In particular, contributions are proposed on the multi-physics simulation of families of electronic packages, multi-physics advanced modeling in power electronics, multiphysics modeling and simulation of LEDs, batteries and other micro and nano-structures.

Keywords

History of engineering & technology --- lithium-ion battery --- thermal modelling --- electro-thermal model --- heat generation --- experimental validation --- thermal transient testing --- non-destructive testing --- thermal testability --- accuracy repeatability and reproducibility of thermal measurements --- thermal testing standards --- 3D IC --- microchannels --- liquid cooling --- compact thermal model --- thermal simulation --- hotspot --- thermal-aware task scheduling --- DVFS --- statistical analysis --- electronic packages --- detailed thermal model --- Joint Electron Device Engineering Council (JEDEC) metrics --- thermal impedance --- AlGaN-GaN HEMT --- TDTR --- thermal conductivity --- thermal interface resistance --- size effect --- phonon transport mechanisms --- nonlinear thermal model --- SPICE --- pulse transformer --- thermal phenomena --- self-heating --- modelling --- measurements --- BCI-DCTM --- ROM --- modal approach --- BGA --- module temperature --- solar energy --- heat transfer mechanisms --- power LED measurement and simulation --- life testing --- reliability testing --- LM-80 --- TM-21 --- LED lifetime modelling --- LED multi-domain modelling --- Spice-like modelling of LEDs --- lifetime extrapolation and modelling of LEDs --- beyond CMOS --- VO2 --- thermal-electronic circuits --- electro-thermal simulation --- vertical structure --- power LEDs --- thermal pads --- thermal resistance --- optical efficiency --- electronics cooling --- Light-emitting diodes --- CoB LEDs --- multi-domain modeling --- finite volume method --- phosphor modeling --- magnetic nanoparticle --- microfluidics --- CFD --- OpenFOAM --- two-phase solver --- rheology --- LED --- Delphi4LED --- digital twin --- digital luminaire design --- computation time --- Industry 4.0


Book
Nanostructured Light-Emitters
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Significant progress has been made in nanophotonics and the use of nanostructured materials for optoelectronic devices, including light-emitting diodes (LEDs) and laser diodes, which have recently attracted considerable attention due to their unique geometry. Nanostructures in small dimensions, comprising nanowires, nanotubes, and nanoparticles, etc,. can be perfectly integrated into a variety of technological platforms, offering novel physical and chemical properties for high-performance, light-emitting devices. This Special Issue aims to present the most recent advances in the field of nanophotonics, which focuses on LEDs and laser diodes. We invite contributions of original research articles, as well as review articles that are aligned to the following topics that include, but are not limited to, thetheoretical calculation, synthesis, characterization, and application of such novel nanostructures for light-emitting devices. The application of nanostructured light-emitters in general lighting, imaging, and displays is also highly encouraged.

Keywords

History of engineering & technology --- Liquid phase deposition method --- InGaN/GaN light-emitting diode --- silver nanoparticle --- zinc oxide --- localized surface plasmon --- β-Ga2O3 --- III-Nitrides --- monoclinic --- hexagonal arrangement --- high-power --- current distribution --- vertical structure LED --- blue organic light emitting diodes --- transport materials --- host-dopant --- nanoparticles --- luminescence --- non-stoichiometric ZnxAgyInS1.5+x+0.5y nanocrystals --- photoluminescence properties --- tunable fluorescence emission --- one-pot approach --- perovskite light-emitting diodes --- three-step spin coating --- hole transport layer --- PEDOT:PSS/MoO3-ammonia composite --- μLED displays --- μLEDs --- GaN nanowires --- core-shell structure --- ultraviolet (UV) emitter --- surface plasmon --- Pt nanoparticles --- hole-pattern --- photon emission efficiency --- distributed Bragg reflectors --- gratings --- GaN-based lasers --- linewidth --- epsilon-near-zero --- wideband absorber --- plasmon mode --- Brewster mode --- visible light communication --- photonic crystals --- flip-chip LED --- Purcell effect --- light extraction efficiency --- nanostructured materials --- surface/interface properties --- nanostructured light-emitting devices --- physical mechanism --- surface/interface modification --- surface/interface control --- micro-scale light emitting diode --- sapphire substrate --- encapsulation --- compound semiconductor --- nanostructure --- ultraviolet --- light-emitting diode (LED) --- molecular beam epitaxy --- GaN --- AlN --- photonic nanojet --- photonic nanojet array --- self-assembly --- template-assisted self-assembly --- patterning efficiency --- III-nitride thin film --- nanostructures --- ultraviolet emitters --- surface passivation --- luminescence intensity --- n/a


Book
Forest Pathology and Entomology
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The 22 papers that make up this Special Issue deal with pathogen and pest impact on forest health, from the diagnosis to the surveillance of causative agents, from the study of parasites’ biological, epidemiological, and ecological traits to their correct taxonomy and classification, and from disease and pest monitoring to sustainable control strategies.

Keywords

plant destroyers --- disease diagnosis --- RxLR-dEER --- soil-borne pathogen --- exclusivity --- inclusivity --- Phlebiopsis gigantea --- EF1α --- introns --- exons --- phylogenesis --- non-host attack --- post-epidemic --- facilitation --- endemic population strategies --- leaf baiting --- rDNA ITS regions --- soil --- water --- ITS clades --- Mediterranean vegetation --- ecology --- soil inhabitants --- aquatic species --- biodiversity --- bark beetles --- symbionts --- species assemblage --- beta diversity --- forest ecosystems --- Thaumetopoea pityocampa --- seasonal flight activity --- sexual pheromone traps --- Pinus sylvestris --- forest insect pest --- population suppression --- leaf litter --- forest management --- arthropods --- Norway spruce --- Heterobasidion root rot --- primary infection --- secondary infection --- first rotation forest --- afforestation --- Asian gypsy moth --- Lymantria dispar --- invasive species --- forest pests --- natural enemies --- aggregation pheromones --- pest management --- Mediterranean pine forests --- Emerald ash borer --- Agrilus planipennis --- post-invasion conditions --- insect traps --- prism trap --- Fraxinus americana --- DNA-based diagnostics --- LAMP --- Dothistroma needle blight --- ‘Candidatus Phytoplasma’ species --- 16Sr group/subgroups --- PCR --- yellows diseases --- witches’ broom --- phloem discoloration --- die-back --- phytoplasma strains --- etiology --- eucalyptus little-leaf --- disease incidence --- Anoplophora chinensis --- temperature --- survival --- reproduction --- fecundity --- biocontrol --- bioinsecticide --- entomopathogen --- microbial --- ecosystem --- basidiospores --- conidia --- Heterobasidion spp. --- spore dispersal --- susceptibility --- wood discs --- Dothistroma septosporum --- Mycosphaerella pini --- loop-mediated isothermal amplification --- molecular diagnostics --- field-portable diagnostics --- Pinus nigra subsp. laricio --- forest health protection --- forest conservation --- Biscogniauxia mediterranea --- oak decline --- dieback --- Site of Community Importance (S.I.C.) --- tree competition --- warming conditions --- Diplodia tip blight --- Pinus densiflora --- plant diversity --- Sphaeropsis sapinea --- stand type --- vertical structure layer --- Heterobasidion --- carpophores --- fauna --- Tullgren funnels --- forest insects --- forest diseases --- diagnostics --- mitigation options --- citizen science --- fungi --- insects --- diagnosis --- surveillance --- disease and pest management


Book
Thermal and Electro-thermal System Simulation 2020
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book, edited by Prof. Marta Rencz and Prof Andras Poppe, Budapest University of Technology and Economics, and by Prof. Lorenzo Codecasa, Politecnico di Milano, collects fourteen papers carefully selected for the “thermal and electro-thermal system simulation” Special Issue of Energies. These contributions present the latest results in a currently very “hot” topic in electronics: the thermal and electro-thermal simulation of electronic components and systems. Several papers here proposed have turned out to be extended versions of papers presented at THERMINIC 2019, which was one of the 2019 stages of choice for presenting outstanding contributions on thermal and electro-thermal simulation of electronic systems. The papers proposed to the thermal community in this book deal with modeling and simulation of state-of-the-art applications which are highly critical from the thermal point of view, and around which there is great research activity in both industry and academia. In particular, contributions are proposed on the multi-physics simulation of families of electronic packages, multi-physics advanced modeling in power electronics, multiphysics modeling and simulation of LEDs, batteries and other micro and nano-structures.

Keywords

lithium-ion battery --- thermal modelling --- electro-thermal model --- heat generation --- experimental validation --- thermal transient testing --- non-destructive testing --- thermal testability --- accuracy repeatability and reproducibility of thermal measurements --- thermal testing standards --- 3D IC --- microchannels --- liquid cooling --- compact thermal model --- thermal simulation --- hotspot --- thermal-aware task scheduling --- DVFS --- statistical analysis --- electronic packages --- detailed thermal model --- Joint Electron Device Engineering Council (JEDEC) metrics --- thermal impedance --- AlGaN-GaN HEMT --- TDTR --- thermal conductivity --- thermal interface resistance --- size effect --- phonon transport mechanisms --- nonlinear thermal model --- SPICE --- pulse transformer --- thermal phenomena --- self-heating --- modelling --- measurements --- BCI-DCTM --- ROM --- modal approach --- BGA --- module temperature --- solar energy --- heat transfer mechanisms --- power LED measurement and simulation --- life testing --- reliability testing --- LM-80 --- TM-21 --- LED lifetime modelling --- LED multi-domain modelling --- Spice-like modelling of LEDs --- lifetime extrapolation and modelling of LEDs --- beyond CMOS --- VO2 --- thermal-electronic circuits --- electro-thermal simulation --- vertical structure --- power LEDs --- thermal pads --- thermal resistance --- optical efficiency --- electronics cooling --- Light-emitting diodes --- CoB LEDs --- multi-domain modeling --- finite volume method --- phosphor modeling --- magnetic nanoparticle --- microfluidics --- CFD --- OpenFOAM --- two-phase solver --- rheology --- LED --- Delphi4LED --- digital twin --- digital luminaire design --- computation time --- Industry 4.0


Book
Nanostructured Light-Emitters
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Significant progress has been made in nanophotonics and the use of nanostructured materials for optoelectronic devices, including light-emitting diodes (LEDs) and laser diodes, which have recently attracted considerable attention due to their unique geometry. Nanostructures in small dimensions, comprising nanowires, nanotubes, and nanoparticles, etc,. can be perfectly integrated into a variety of technological platforms, offering novel physical and chemical properties for high-performance, light-emitting devices. This Special Issue aims to present the most recent advances in the field of nanophotonics, which focuses on LEDs and laser diodes. We invite contributions of original research articles, as well as review articles that are aligned to the following topics that include, but are not limited to, thetheoretical calculation, synthesis, characterization, and application of such novel nanostructures for light-emitting devices. The application of nanostructured light-emitters in general lighting, imaging, and displays is also highly encouraged.

Keywords

Liquid phase deposition method --- InGaN/GaN light-emitting diode --- silver nanoparticle --- zinc oxide --- localized surface plasmon --- β-Ga2O3 --- III-Nitrides --- monoclinic --- hexagonal arrangement --- high-power --- current distribution --- vertical structure LED --- blue organic light emitting diodes --- transport materials --- host-dopant --- nanoparticles --- luminescence --- non-stoichiometric ZnxAgyInS1.5+x+0.5y nanocrystals --- photoluminescence properties --- tunable fluorescence emission --- one-pot approach --- perovskite light-emitting diodes --- three-step spin coating --- hole transport layer --- PEDOT:PSS/MoO3-ammonia composite --- μLED displays --- μLEDs --- GaN nanowires --- core-shell structure --- ultraviolet (UV) emitter --- surface plasmon --- Pt nanoparticles --- hole-pattern --- photon emission efficiency --- distributed Bragg reflectors --- gratings --- GaN-based lasers --- linewidth --- epsilon-near-zero --- wideband absorber --- plasmon mode --- Brewster mode --- visible light communication --- photonic crystals --- flip-chip LED --- Purcell effect --- light extraction efficiency --- nanostructured materials --- surface/interface properties --- nanostructured light-emitting devices --- physical mechanism --- surface/interface modification --- surface/interface control --- micro-scale light emitting diode --- sapphire substrate --- encapsulation --- compound semiconductor --- nanostructure --- ultraviolet --- light-emitting diode (LED) --- molecular beam epitaxy --- GaN --- AlN --- photonic nanojet --- photonic nanojet array --- self-assembly --- template-assisted self-assembly --- patterning efficiency --- III-nitride thin film --- nanostructures --- ultraviolet emitters --- surface passivation --- luminescence intensity --- n/a


Book
Forest Pathology and Entomology
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The 22 papers that make up this Special Issue deal with pathogen and pest impact on forest health, from the diagnosis to the surveillance of causative agents, from the study of parasites’ biological, epidemiological, and ecological traits to their correct taxonomy and classification, and from disease and pest monitoring to sustainable control strategies.

Keywords

Research & information: general --- Biology, life sciences --- Forestry & related industries --- plant destroyers --- disease diagnosis --- RxLR-dEER --- soil-borne pathogen --- exclusivity --- inclusivity --- Phlebiopsis gigantea --- EF1α --- introns --- exons --- phylogenesis --- non-host attack --- post-epidemic --- facilitation --- endemic population strategies --- leaf baiting --- rDNA ITS regions --- soil --- water --- ITS clades --- Mediterranean vegetation --- ecology --- soil inhabitants --- aquatic species --- biodiversity --- bark beetles --- symbionts --- species assemblage --- beta diversity --- forest ecosystems --- Thaumetopoea pityocampa --- seasonal flight activity --- sexual pheromone traps --- Pinus sylvestris --- forest insect pest --- population suppression --- leaf litter --- forest management --- arthropods --- Norway spruce --- Heterobasidion root rot --- primary infection --- secondary infection --- first rotation forest --- afforestation --- Asian gypsy moth --- Lymantria dispar --- invasive species --- forest pests --- natural enemies --- aggregation pheromones --- pest management --- Mediterranean pine forests --- Emerald ash borer --- Agrilus planipennis --- post-invasion conditions --- insect traps --- prism trap --- Fraxinus americana --- DNA-based diagnostics --- LAMP --- Dothistroma needle blight --- ‘Candidatus Phytoplasma’ species --- 16Sr group/subgroups --- PCR --- yellows diseases --- witches’ broom --- phloem discoloration --- die-back --- phytoplasma strains --- etiology --- eucalyptus little-leaf --- disease incidence --- Anoplophora chinensis --- temperature --- survival --- reproduction --- fecundity --- biocontrol --- bioinsecticide --- entomopathogen --- microbial --- ecosystem --- basidiospores --- conidia --- Heterobasidion spp. --- spore dispersal --- susceptibility --- wood discs --- Dothistroma septosporum --- Mycosphaerella pini --- loop-mediated isothermal amplification --- molecular diagnostics --- field-portable diagnostics --- Pinus nigra subsp. laricio --- forest health protection --- forest conservation --- Biscogniauxia mediterranea --- oak decline --- dieback --- Site of Community Importance (S.I.C.) --- tree competition --- warming conditions --- Diplodia tip blight --- Pinus densiflora --- plant diversity --- Sphaeropsis sapinea --- stand type --- vertical structure layer --- Heterobasidion --- carpophores --- fauna --- Tullgren funnels --- forest insects --- forest diseases --- diagnostics --- mitigation options --- citizen science --- fungi --- insects --- diagnosis --- surveillance --- disease and pest management --- plant destroyers --- disease diagnosis --- RxLR-dEER --- soil-borne pathogen --- exclusivity --- inclusivity --- Phlebiopsis gigantea --- EF1α --- introns --- exons --- phylogenesis --- non-host attack --- post-epidemic --- facilitation --- endemic population strategies --- leaf baiting --- rDNA ITS regions --- soil --- water --- ITS clades --- Mediterranean vegetation --- ecology --- soil inhabitants --- aquatic species --- biodiversity --- bark beetles --- symbionts --- species assemblage --- beta diversity --- forest ecosystems --- Thaumetopoea pityocampa --- seasonal flight activity --- sexual pheromone traps --- Pinus sylvestris --- forest insect pest --- population suppression --- leaf litter --- forest management --- arthropods --- Norway spruce --- Heterobasidion root rot --- primary infection --- secondary infection --- first rotation forest --- afforestation --- Asian gypsy moth --- Lymantria dispar --- invasive species --- forest pests --- natural enemies --- aggregation pheromones --- pest management --- Mediterranean pine forests --- Emerald ash borer --- Agrilus planipennis --- post-invasion conditions --- insect traps --- prism trap --- Fraxinus americana --- DNA-based diagnostics --- LAMP --- Dothistroma needle blight --- ‘Candidatus Phytoplasma’ species --- 16Sr group/subgroups --- PCR --- yellows diseases --- witches’ broom --- phloem discoloration --- die-back --- phytoplasma strains --- etiology --- eucalyptus little-leaf --- disease incidence --- Anoplophora chinensis --- temperature --- survival --- reproduction --- fecundity --- biocontrol --- bioinsecticide --- entomopathogen --- microbial --- ecosystem --- basidiospores --- conidia --- Heterobasidion spp. --- spore dispersal --- susceptibility --- wood discs --- Dothistroma septosporum --- Mycosphaerella pini --- loop-mediated isothermal amplification --- molecular diagnostics --- field-portable diagnostics --- Pinus nigra subsp. laricio --- forest health protection --- forest conservation --- Biscogniauxia mediterranea --- oak decline --- dieback --- Site of Community Importance (S.I.C.) --- tree competition --- warming conditions --- Diplodia tip blight --- Pinus densiflora --- plant diversity --- Sphaeropsis sapinea --- stand type --- vertical structure layer --- Heterobasidion --- carpophores --- fauna --- Tullgren funnels --- forest insects --- forest diseases --- diagnostics --- mitigation options --- citizen science --- fungi --- insects --- diagnosis --- surveillance --- disease and pest management


Book
Advances in Quantitative Remote Sensing in China - In Memory of Prof. Xiaowen Li
Authors: --- ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Quantitative land remote sensing has recently advanced dramatically, particularly in China. It has been largely driven by vast governmental investment, the availability of a huge amount of Chinese satellite data, geospatial information requirements for addressing pressing environmental issues and other societal benefits. Many individuals have also fostered and made great contributions to its development, and Prof. Xiaowen Li was one of these leading figures. This book is published in memory of Prof. Li. The papers collected in this book cover topics from surface reflectance simulation, inversion algorithm and estimation of variables, to applications in optical, thermal, Lidar and microwave remote sensing. The wide range of variables include directional reflectance, chlorophyll fluorescence, aerosol optical depth, incident solar radiation, albedo, surface temperature, upward longwave radiation, leaf area index, fractional vegetation cover, forest biomass, precipitation, evapotranspiration, freeze/thaw snow cover, vegetation productivity, phenology and biodiversity indicators. They clearly reflect the current level of research in this area. This book constitutes an excellent reference suitable for upper-level undergraduate students, graduate students and professionals in remote sensing.

Keywords

gross primary production (GPP) --- interference filter --- Visible Infrared Imaging Radiometer Suite (VIIRS) --- cost-efficient --- precipitation --- topographic effects --- land surface temperature --- Land surface emissivity --- scale effects --- spatial-temporal variations --- statistics methods --- inter-annual variation --- spatial representativeness --- FY-3C/MERSI --- sunphotometer --- PROSPECT --- passive microwave --- flux measurements --- urban scale --- vegetation dust-retention --- multiple ecological factors --- leaf age --- standard error of the mean --- LUT method --- spectra --- SURFRAD --- Land surface temperature --- aboveground biomass --- uncertainty --- land surface variables --- copper --- Northeast China --- forest disturbance --- end of growing season (EOS) --- random forest model --- probability density function --- downward shortwave radiation --- machine learning --- MODIS products --- composite slope --- daily average value --- canopy reflectance --- spatiotemporal representative --- light use efficiency --- hybrid method --- disturbance index --- quantitative remote sensing inversion --- SCOPE --- GPP --- South China’s --- anisotropic reflectance --- vertical structure --- snow cover --- land cover change --- start of growing season (SOS) --- MS–PT algorithm --- aerosol --- pixel unmixing --- HiWATER --- algorithmic assessment --- surface radiation budget --- latitudinal pattern --- ICESat GLAS --- vegetation phenology --- SIF --- metric comparison --- Antarctica --- spatial heterogeneity --- comprehensive field experiment --- reflectance model --- sinusoidal method --- NDVI --- BRDF --- cloud fraction --- NPP --- VPM --- China --- dense forest --- vegetation remote sensing --- Cunninghamia --- high resolution --- geometric-optical model --- phenology --- LiDAR --- ZY-3 MUX --- point cloud --- multi-scale validation --- Fraunhofer Line Discrimination (FLD) --- rice --- fractional vegetation cover (FVC) --- interpolation --- high-resolution freeze/thaw --- drought --- Synthetic Aperture Radar (SAR) --- controlling factors --- sampling design --- downscaling --- n/a --- Chinese fir --- MRT-based model --- RADARSAT-2 --- northern China --- leaf area density --- potential evapotranspiration --- black-sky albedo (BSA) --- decision tree --- CMA --- fluorescence quantum efficiency in dark-adapted conditions (FQE) --- surface solar irradiance --- validation --- geographical detector model --- vertical vegetation stratification --- spatiotemporal distribution and variation --- gap fraction --- phenological parameters --- spatio-temporal --- albedometer --- variability --- GLASS --- gross primary productivity (GPP) --- EVI2 --- machine learning algorithms --- latent heat --- GLASS LAI time series --- boreal forest --- leaf --- maize --- heterogeneity --- temperature profiles --- crop-growing regions --- satellite observations --- rugged terrain --- species richness --- voxel --- LAI --- TMI data --- GF-1 WFV --- spectral --- HJ-1 CCD --- leaf area index --- evapotranspiration --- land-surface temperature products (LSTs) --- SPI --- AVHRR --- Tibetan Plateau --- snow-free albedo --- PROSPECT-5B+SAILH (PROSAIL) model --- MCD43A3 C6 --- 3D reconstruction --- photoelectric detector --- multi-data set --- BEPS --- aerosol retrieval --- plant functional type --- multisource data fusion --- remote sensing --- leaf spectral properties --- solo slope --- land surface albedo --- longwave upwelling radiation (LWUP) --- terrestrial LiDAR --- AMSR2 --- geometric optical radiative transfer (GORT) model --- MuSyQ-GPP algorithm --- tree canopy --- FY-3C/MWRI --- meteorological factors --- solar-induced chlorophyll fluorescence --- metric integration --- observations --- polar orbiting satellite --- arid/semiarid --- homogeneous and pure pixel filter --- thermal radiation directionality --- biodiversity --- gradient boosting regression tree --- forest canopy height --- Landsat --- subpixel information --- MODIS --- humidity profiles --- NIR --- geostationary satellite --- South China's --- MS-PT algorithm


Book
Advances in Quantitative Remote Sensing in China - In Memory of Prof. Xiaowen Li
Authors: --- ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Quantitative land remote sensing has recently advanced dramatically, particularly in China. It has been largely driven by vast governmental investment, the availability of a huge amount of Chinese satellite data, geospatial information requirements for addressing pressing environmental issues and other societal benefits. Many individuals have also fostered and made great contributions to its development, and Prof. Xiaowen Li was one of these leading figures. This book is published in memory of Prof. Li. The papers collected in this book cover topics from surface reflectance simulation, inversion algorithm and estimation of variables, to applications in optical, thermal, Lidar and microwave remote sensing. The wide range of variables include directional reflectance, chlorophyll fluorescence, aerosol optical depth, incident solar radiation, albedo, surface temperature, upward longwave radiation, leaf area index, fractional vegetation cover, forest biomass, precipitation, evapotranspiration, freeze/thaw snow cover, vegetation productivity, phenology and biodiversity indicators. They clearly reflect the current level of research in this area. This book constitutes an excellent reference suitable for upper-level undergraduate students, graduate students and professionals in remote sensing.

Keywords

gross primary production (GPP) --- interference filter --- Visible Infrared Imaging Radiometer Suite (VIIRS) --- cost-efficient --- precipitation --- topographic effects --- land surface temperature --- Land surface emissivity --- scale effects --- spatial-temporal variations --- statistics methods --- inter-annual variation --- spatial representativeness --- FY-3C/MERSI --- sunphotometer --- PROSPECT --- passive microwave --- flux measurements --- urban scale --- vegetation dust-retention --- multiple ecological factors --- leaf age --- standard error of the mean --- LUT method --- spectra --- SURFRAD --- Land surface temperature --- aboveground biomass --- uncertainty --- land surface variables --- copper --- Northeast China --- forest disturbance --- end of growing season (EOS) --- random forest model --- probability density function --- downward shortwave radiation --- machine learning --- MODIS products --- composite slope --- daily average value --- canopy reflectance --- spatiotemporal representative --- light use efficiency --- hybrid method --- disturbance index --- quantitative remote sensing inversion --- SCOPE --- GPP --- South China’s --- anisotropic reflectance --- vertical structure --- snow cover --- land cover change --- start of growing season (SOS) --- MS–PT algorithm --- aerosol --- pixel unmixing --- HiWATER --- algorithmic assessment --- surface radiation budget --- latitudinal pattern --- ICESat GLAS --- vegetation phenology --- SIF --- metric comparison --- Antarctica --- spatial heterogeneity --- comprehensive field experiment --- reflectance model --- sinusoidal method --- NDVI --- BRDF --- cloud fraction --- NPP --- VPM --- China --- dense forest --- vegetation remote sensing --- Cunninghamia --- high resolution --- geometric-optical model --- phenology --- LiDAR --- ZY-3 MUX --- point cloud --- multi-scale validation --- Fraunhofer Line Discrimination (FLD) --- rice --- fractional vegetation cover (FVC) --- interpolation --- high-resolution freeze/thaw --- drought --- Synthetic Aperture Radar (SAR) --- controlling factors --- sampling design --- downscaling --- n/a --- Chinese fir --- MRT-based model --- RADARSAT-2 --- northern China --- leaf area density --- potential evapotranspiration --- black-sky albedo (BSA) --- decision tree --- CMA --- fluorescence quantum efficiency in dark-adapted conditions (FQE) --- surface solar irradiance --- validation --- geographical detector model --- vertical vegetation stratification --- spatiotemporal distribution and variation --- gap fraction --- phenological parameters --- spatio-temporal --- albedometer --- variability --- GLASS --- gross primary productivity (GPP) --- EVI2 --- machine learning algorithms --- latent heat --- GLASS LAI time series --- boreal forest --- leaf --- maize --- heterogeneity --- temperature profiles --- crop-growing regions --- satellite observations --- rugged terrain --- species richness --- voxel --- LAI --- TMI data --- GF-1 WFV --- spectral --- HJ-1 CCD --- leaf area index --- evapotranspiration --- land-surface temperature products (LSTs) --- SPI --- AVHRR --- Tibetan Plateau --- snow-free albedo --- PROSPECT-5B+SAILH (PROSAIL) model --- MCD43A3 C6 --- 3D reconstruction --- photoelectric detector --- multi-data set --- BEPS --- aerosol retrieval --- plant functional type --- multisource data fusion --- remote sensing --- leaf spectral properties --- solo slope --- land surface albedo --- longwave upwelling radiation (LWUP) --- terrestrial LiDAR --- AMSR2 --- geometric optical radiative transfer (GORT) model --- MuSyQ-GPP algorithm --- tree canopy --- FY-3C/MWRI --- meteorological factors --- solar-induced chlorophyll fluorescence --- metric integration --- observations --- polar orbiting satellite --- arid/semiarid --- homogeneous and pure pixel filter --- thermal radiation directionality --- biodiversity --- gradient boosting regression tree --- forest canopy height --- Landsat --- subpixel information --- MODIS --- humidity profiles --- NIR --- geostationary satellite --- South China's --- MS-PT algorithm

Listing 1 - 10 of 13 << page
of 2
>>
Sort by