Listing 1 - 7 of 7 |
Sort by
|
Choose an application
During the tire development process, its handling properties are first assessed objectively by tests on specific test benches as on track. Then, professional test-drivers perform some subjective tests on track to evaluate its performances based on their own feeling. Here comes the importance of the vehicle-driver interactions understanding, i.e. the subject of the PhD supported by this Master Thesis, to answer such questions and adapt the tire to customer needs : "Which tire characteristic does influence this handling properties?", "Why is the driver not performing exactly the same maneuver when that tire parameter is changed?", "What does alter the driver judgment?". Some studies ongoing in the frame of this PhD had already shown correlations between subjective and objective assessments. As a results, a qualitative model was needed to corroborate these correlations, to link them to tire characteristics and specifications, and to bring a physical explanation of the phenomena observed. A theoretical tool, split in the three main blocks listed below, has then been implemented in MATLAB© during this internship to bring an analytical approach. 1. A body dynamics model consisting in a modified yaw-slip-roll single track model. The kinematics and compliance terms will also be integrated in this model. 2. A steering model, developed in four sub-models of increasing complexity. 3. A non linear tire model, defined following the Pacejka ’94 Magic Formula. All together, these blocks built a robust global model able to simulate a wide range of both open and close-loop maneuvers in the linear and non linear domains. Moreover, this model helped the study of tire characteristics influence on these maneuvers by using sensitivity analyses, which leaded to highlight two tire characteristics having a big influence on subjective assessments: the rear cornering stiffness and the pneumatic trail. Having been validated, this model will now be mostly used in a large-scale study within the Company, in the frame of Nico Pagliarecci PhD. Lastly, note that none of the parameters value or tire constructions used in this work to obtain the results presented will be provided explicitly, to respect the Goodyear confidentiality policy.
vehicle dynamics model --- steering model --- steering system --- K&C model --- tire model --- non linear tire model --- Pacejka model --- yaw slip roll model --- body dynamics model --- Ingénierie, informatique & technologie > Ingénierie civile
Choose an application
Connected and automated vehicles (CAVs) are a transformative technology that is expected to change and improve the safety and efficiency of mobility. As the main functional components of CAVs, advanced sensing technologies and control algorithms, which gather environmental information, process data, and control vehicle motion, are of great importance. The development of novel sensing technologies for CAVs has become a hotspot in recent years. Thanks to improved sensing technologies, CAVs are able to interpret sensory information to further detect obstacles, localize their positions, navigate themselves, and interact with other surrounding vehicles in the dynamic environment. Furthermore, leveraging computer vision and other sensing methods, in-cabin humans’ body activities, facial emotions, and even mental states can also be recognized. Therefore, the aim of this Special Issue has been to gather contributions that illustrate the interest in the sensing and control of CAVs.
Technology: general issues --- History of engineering & technology --- TROOP --- truck platooning --- path planning --- kalman filter --- V2V communication --- string stability --- off-tracking --- articulated cargo trucks --- kabsch algorithm --- potential field --- sigmoid curve --- autonomous vehicles --- connected and autonomous vehicles --- artificial neural networks --- end-to-end learning --- multi-task learning --- urban vehicle platooning --- simulation --- attention --- executive control --- simulated driving --- task-cuing experiment --- electroencephalogram --- fronto-parietal network --- object vehicle estimation --- radar accuracy --- data-driven --- radar latency --- weighted interpolation --- autonomous vehicle --- urban platooning --- vehicle-to-vehicle communication --- in-vehicle network --- analytic hierarchy architecture --- traffic scenes --- object detection --- multi-scale channel attention --- attention feature fusion --- collision warning system --- ultra-wideband --- dead reckoning --- time to collision --- vehicle dynamic parameters --- Unscented Kalman Filter --- multiple-model --- electric vehicle --- unified chassis control --- unsprung mass --- autonomous driving --- trajectory tracking --- real-time control --- model predictive control --- tyre blow-out --- yaw stability --- roll stability --- vehicle dynamics model --- n/a
Choose an application
Connected and automated vehicles (CAVs) are a transformative technology that is expected to change and improve the safety and efficiency of mobility. As the main functional components of CAVs, advanced sensing technologies and control algorithms, which gather environmental information, process data, and control vehicle motion, are of great importance. The development of novel sensing technologies for CAVs has become a hotspot in recent years. Thanks to improved sensing technologies, CAVs are able to interpret sensory information to further detect obstacles, localize their positions, navigate themselves, and interact with other surrounding vehicles in the dynamic environment. Furthermore, leveraging computer vision and other sensing methods, in-cabin humans’ body activities, facial emotions, and even mental states can also be recognized. Therefore, the aim of this Special Issue has been to gather contributions that illustrate the interest in the sensing and control of CAVs.
TROOP --- truck platooning --- path planning --- kalman filter --- V2V communication --- string stability --- off-tracking --- articulated cargo trucks --- kabsch algorithm --- potential field --- sigmoid curve --- autonomous vehicles --- connected and autonomous vehicles --- artificial neural networks --- end-to-end learning --- multi-task learning --- urban vehicle platooning --- simulation --- attention --- executive control --- simulated driving --- task-cuing experiment --- electroencephalogram --- fronto-parietal network --- object vehicle estimation --- radar accuracy --- data-driven --- radar latency --- weighted interpolation --- autonomous vehicle --- urban platooning --- vehicle-to-vehicle communication --- in-vehicle network --- analytic hierarchy architecture --- traffic scenes --- object detection --- multi-scale channel attention --- attention feature fusion --- collision warning system --- ultra-wideband --- dead reckoning --- time to collision --- vehicle dynamic parameters --- Unscented Kalman Filter --- multiple-model --- electric vehicle --- unified chassis control --- unsprung mass --- autonomous driving --- trajectory tracking --- real-time control --- model predictive control --- tyre blow-out --- yaw stability --- roll stability --- vehicle dynamics model --- n/a
Choose an application
Connected and automated vehicles (CAVs) are a transformative technology that is expected to change and improve the safety and efficiency of mobility. As the main functional components of CAVs, advanced sensing technologies and control algorithms, which gather environmental information, process data, and control vehicle motion, are of great importance. The development of novel sensing technologies for CAVs has become a hotspot in recent years. Thanks to improved sensing technologies, CAVs are able to interpret sensory information to further detect obstacles, localize their positions, navigate themselves, and interact with other surrounding vehicles in the dynamic environment. Furthermore, leveraging computer vision and other sensing methods, in-cabin humans’ body activities, facial emotions, and even mental states can also be recognized. Therefore, the aim of this Special Issue has been to gather contributions that illustrate the interest in the sensing and control of CAVs.
Technology: general issues --- History of engineering & technology --- TROOP --- truck platooning --- path planning --- kalman filter --- V2V communication --- string stability --- off-tracking --- articulated cargo trucks --- kabsch algorithm --- potential field --- sigmoid curve --- autonomous vehicles --- connected and autonomous vehicles --- artificial neural networks --- end-to-end learning --- multi-task learning --- urban vehicle platooning --- simulation --- attention --- executive control --- simulated driving --- task-cuing experiment --- electroencephalogram --- fronto-parietal network --- object vehicle estimation --- radar accuracy --- data-driven --- radar latency --- weighted interpolation --- autonomous vehicle --- urban platooning --- vehicle-to-vehicle communication --- in-vehicle network --- analytic hierarchy architecture --- traffic scenes --- object detection --- multi-scale channel attention --- attention feature fusion --- collision warning system --- ultra-wideband --- dead reckoning --- time to collision --- vehicle dynamic parameters --- Unscented Kalman Filter --- multiple-model --- electric vehicle --- unified chassis control --- unsprung mass --- autonomous driving --- trajectory tracking --- real-time control --- model predictive control --- tyre blow-out --- yaw stability --- roll stability --- vehicle dynamics model
Choose an application
Transportation systems play a major role in the reduction of energy consumptions and environmental impact all over the world. The significant amount of energy of transport systems forces the adoption of new solutions to ensure their performance with energy-saving and reduced environmental impact. In this context, technologies and materials, devices and systems, design methods, and management techniques, related to the electrical power systems for transportation are continuously improving thanks to research activities. The main common challenge in all the applications concerns the adoption of innovative solutions that can improve existing transportation systems in terms of efficiency and sustainability.
Technology: general issues --- electric bus --- vehicle selection --- road operation test --- sustainable development --- more electric aircraft (MEA) --- multilevel converter --- high power density --- electric vehicles (EVs) --- independent-drive technology --- deep reinforcement learning (DRL) --- optimal torque distribution --- wireless power transfer --- non-linear --- fast terminal sliding mode control --- power converters --- efficiency --- energy storage systems --- electrical power systems --- hydraulic power systems --- hydraulic accumulator --- ultracapacitor --- lithium-ion battery --- dual-polarization model --- fractional-order model --- SOC estimation --- hybrid Kalman filter --- vehicle–grid integration --- distribution network voltage regulation --- alternating direction method of multipliers --- railway transport --- eco-driving --- energy efficiency --- optimization algorithm --- power systems --- ancillary services --- EV motor inverter --- electrical installation --- on-board charger --- vehicle-to-home --- home energy management system --- hybrid electric bulldozer --- tracked vehicle --- control strategy --- adaptive control --- power smoothing --- electric vehicles --- public charging station --- bilevel model --- range constraint --- hybrid electric vehicles --- equivalent consumption minimization strategy --- power-split hybrid --- heavy-duty vehicles --- diesel engine --- natural gas engine --- hybrid powertrain --- supercapacitor --- fuel consumption --- mathematical modeling --- electric vehicle --- city bus --- gearbox --- transmission --- optimization --- hybrid electric vehicle --- power-split --- fuel economy --- particle swarm optimization --- route guidance strategies --- stochastic charging demands --- time-varying road network --- shift-by-wire (SBW) --- switched reluctance motor (SRM) --- non-uniform air-gap --- rotor hole placement --- torque ripple --- rotor structure --- electrical transport --- electrical vehicle --- marine transport --- railway --- battery electric vehicles --- signalized intersections --- energy-optimized vehicle trajectories --- vehicle dynamics model --- road freight transport --- vehicle stock turnover model --- deep decarbonization --- road freight vehicle --- electric-drive vehicle --- lithium-ion --- dQ/dV --- dV/dQ --- frequency regulation --- V2G --- G2V --- fault diagnosis --- PEM fuel cell system --- PFCM-ABC-SVM --- ultra-fast charging --- multimodule DC-DC converters --- dual active bridge DC-DC converter --- full-bridge phase-shift DC-DC converter --- input-series output-series --- input-series output-parallel --- input-parallel output-parallel --- input-parallel output-series --- input-series input-parallel output-series output-parallel --- battery aging --- plug-in electric vehicles --- energy management --- global optimization --- state of health --- particle swarm algorithm --- genetic algorithm --- simulation --- plug-in hybrid --- microgrid --- photovoltaic --- robust optimization --- stochastic optimization --- battery management systems --- battery fuel gauge --- state of charge --- power fade --- capacity fade --- robust estimation --- predictive control --- environmental impacts --- life cycle assessment --- review --- anti-lock braking system --- fuzzy logic system --- controller --- vehicle --- traffic signal control --- cost model --- total cost of ownership --- TCO --- charging strategy --- public transport --- sustainability --- reused battery --- adaptive control theory --- battery management system (BMS) --- internal resistances --- open-circuit voltage --- policy incentive --- public charging infrastructure --- power grid --- grid-side effects --- photovoltaic potentials --- controlled charging --- electric power systems --- transportation --- PV --- inverter
Choose an application
Transportation systems play a major role in the reduction of energy consumptions and environmental impact all over the world. The significant amount of energy of transport systems forces the adoption of new solutions to ensure their performance with energy-saving and reduced environmental impact. In this context, technologies and materials, devices and systems, design methods, and management techniques, related to the electrical power systems for transportation are continuously improving thanks to research activities. The main common challenge in all the applications concerns the adoption of innovative solutions that can improve existing transportation systems in terms of efficiency and sustainability.
electric bus --- vehicle selection --- road operation test --- sustainable development --- more electric aircraft (MEA) --- multilevel converter --- high power density --- electric vehicles (EVs) --- independent-drive technology --- deep reinforcement learning (DRL) --- optimal torque distribution --- wireless power transfer --- non-linear --- fast terminal sliding mode control --- power converters --- efficiency --- energy storage systems --- electrical power systems --- hydraulic power systems --- hydraulic accumulator --- ultracapacitor --- lithium-ion battery --- dual-polarization model --- fractional-order model --- SOC estimation --- hybrid Kalman filter --- vehicle–grid integration --- distribution network voltage regulation --- alternating direction method of multipliers --- railway transport --- eco-driving --- energy efficiency --- optimization algorithm --- power systems --- ancillary services --- EV motor inverter --- electrical installation --- on-board charger --- vehicle-to-home --- home energy management system --- hybrid electric bulldozer --- tracked vehicle --- control strategy --- adaptive control --- power smoothing --- electric vehicles --- public charging station --- bilevel model --- range constraint --- hybrid electric vehicles --- equivalent consumption minimization strategy --- power-split hybrid --- heavy-duty vehicles --- diesel engine --- natural gas engine --- hybrid powertrain --- supercapacitor --- fuel consumption --- mathematical modeling --- electric vehicle --- city bus --- gearbox --- transmission --- optimization --- hybrid electric vehicle --- power-split --- fuel economy --- particle swarm optimization --- route guidance strategies --- stochastic charging demands --- time-varying road network --- shift-by-wire (SBW) --- switched reluctance motor (SRM) --- non-uniform air-gap --- rotor hole placement --- torque ripple --- rotor structure --- electrical transport --- electrical vehicle --- marine transport --- railway --- battery electric vehicles --- signalized intersections --- energy-optimized vehicle trajectories --- vehicle dynamics model --- road freight transport --- vehicle stock turnover model --- deep decarbonization --- road freight vehicle --- electric-drive vehicle --- lithium-ion --- dQ/dV --- dV/dQ --- frequency regulation --- V2G --- G2V --- fault diagnosis --- PEM fuel cell system --- PFCM-ABC-SVM --- ultra-fast charging --- multimodule DC-DC converters --- dual active bridge DC-DC converter --- full-bridge phase-shift DC-DC converter --- input-series output-series --- input-series output-parallel --- input-parallel output-parallel --- input-parallel output-series --- input-series input-parallel output-series output-parallel --- battery aging --- plug-in electric vehicles --- energy management --- global optimization --- state of health --- particle swarm algorithm --- genetic algorithm --- simulation --- plug-in hybrid --- microgrid --- photovoltaic --- robust optimization --- stochastic optimization --- battery management systems --- battery fuel gauge --- state of charge --- power fade --- capacity fade --- robust estimation --- predictive control --- environmental impacts --- life cycle assessment --- review --- anti-lock braking system --- fuzzy logic system --- controller --- vehicle --- traffic signal control --- cost model --- total cost of ownership --- TCO --- charging strategy --- public transport --- sustainability --- reused battery --- adaptive control theory --- battery management system (BMS) --- internal resistances --- open-circuit voltage --- policy incentive --- public charging infrastructure --- power grid --- grid-side effects --- photovoltaic potentials --- controlled charging --- electric power systems --- transportation --- PV --- inverter
Choose an application
Transportation systems play a major role in the reduction of energy consumptions and environmental impact all over the world. The significant amount of energy of transport systems forces the adoption of new solutions to ensure their performance with energy-saving and reduced environmental impact. In this context, technologies and materials, devices and systems, design methods, and management techniques, related to the electrical power systems for transportation are continuously improving thanks to research activities. The main common challenge in all the applications concerns the adoption of innovative solutions that can improve existing transportation systems in terms of efficiency and sustainability.
Technology: general issues --- electric bus --- vehicle selection --- road operation test --- sustainable development --- more electric aircraft (MEA) --- multilevel converter --- high power density --- electric vehicles (EVs) --- independent-drive technology --- deep reinforcement learning (DRL) --- optimal torque distribution --- wireless power transfer --- non-linear --- fast terminal sliding mode control --- power converters --- efficiency --- energy storage systems --- electrical power systems --- hydraulic power systems --- hydraulic accumulator --- ultracapacitor --- lithium-ion battery --- dual-polarization model --- fractional-order model --- SOC estimation --- hybrid Kalman filter --- vehicle–grid integration --- distribution network voltage regulation --- alternating direction method of multipliers --- railway transport --- eco-driving --- energy efficiency --- optimization algorithm --- power systems --- ancillary services --- EV motor inverter --- electrical installation --- on-board charger --- vehicle-to-home --- home energy management system --- hybrid electric bulldozer --- tracked vehicle --- control strategy --- adaptive control --- power smoothing --- electric vehicles --- public charging station --- bilevel model --- range constraint --- hybrid electric vehicles --- equivalent consumption minimization strategy --- power-split hybrid --- heavy-duty vehicles --- diesel engine --- natural gas engine --- hybrid powertrain --- supercapacitor --- fuel consumption --- mathematical modeling --- electric vehicle --- city bus --- gearbox --- transmission --- optimization --- hybrid electric vehicle --- power-split --- fuel economy --- particle swarm optimization --- route guidance strategies --- stochastic charging demands --- time-varying road network --- shift-by-wire (SBW) --- switched reluctance motor (SRM) --- non-uniform air-gap --- rotor hole placement --- torque ripple --- rotor structure --- electrical transport --- electrical vehicle --- marine transport --- railway --- battery electric vehicles --- signalized intersections --- energy-optimized vehicle trajectories --- vehicle dynamics model --- road freight transport --- vehicle stock turnover model --- deep decarbonization --- road freight vehicle --- electric-drive vehicle --- lithium-ion --- dQ/dV --- dV/dQ --- frequency regulation --- V2G --- G2V --- fault diagnosis --- PEM fuel cell system --- PFCM-ABC-SVM --- ultra-fast charging --- multimodule DC-DC converters --- dual active bridge DC-DC converter --- full-bridge phase-shift DC-DC converter --- input-series output-series --- input-series output-parallel --- input-parallel output-parallel --- input-parallel output-series --- input-series input-parallel output-series output-parallel --- battery aging --- plug-in electric vehicles --- energy management --- global optimization --- state of health --- particle swarm algorithm --- genetic algorithm --- simulation --- plug-in hybrid --- microgrid --- photovoltaic --- robust optimization --- stochastic optimization --- battery management systems --- battery fuel gauge --- state of charge --- power fade --- capacity fade --- robust estimation --- predictive control --- environmental impacts --- life cycle assessment --- review --- anti-lock braking system --- fuzzy logic system --- controller --- vehicle --- traffic signal control --- cost model --- total cost of ownership --- TCO --- charging strategy --- public transport --- sustainability --- reused battery --- adaptive control theory --- battery management system (BMS) --- internal resistances --- open-circuit voltage --- policy incentive --- public charging infrastructure --- power grid --- grid-side effects --- photovoltaic potentials --- controlled charging --- electric power systems --- transportation --- PV --- inverter
Listing 1 - 7 of 7 |
Sort by
|