Listing 1 - 4 of 4 |
Sort by
|
Choose an application
Refrigeration, air conditioning, and heat pumps (RACHP) have an important impact on the final energy uses of many sectors of modern society, such as residential, commercial, industrial, transport, and automotive. Moreover, RACHP also have an important environmental impact due to the working fluids that deplete the stratospheric ozone layer, which are being phased out according to the Montreal Protocol (1989). Last, but not least, high global working potential (GWP), working fluids (directly), and energy consumption (indirectly) are responsible for a non-negligible quota of greenhouse gas (GHG) emissions in the atmosphere, thus impacting climate change.
History of engineering & technology --- demand side management (DSM) --- energy efficiency --- energy storage --- demand response (DR) --- flexibility --- R744 transcritical booster --- subcritical booster --- cascade --- parallel compression --- ejector --- commercial/retail refrigeration --- HVAC --- pressure based control --- damper control --- static pressure reset --- CO2 reset --- demand-based control --- energy saving --- human well-being --- IAQ --- Atomic Air --- air conditioning --- chiller --- CO2 --- commercial refrigeration --- heat pump --- heat recovery --- industrial refrigeration --- R744 --- transcritical vapor-compression system --- two-phase ejector --- domestic refrigerator --- consumer habits --- energy consumption --- good practices --- surveys --- ground source heat pump --- tropical climate --- horizontal heat exchanger --- district cooling --- liquid to compressed natural gas --- thermal energy storage --- LNG --- ground source heat pumps --- low GWP refrigerants --- energy analysis --- R410A --- R32 --- R454B
Choose an application
Refrigeration, air conditioning, and heat pumps (RACHP) have an important impact on the final energy uses of many sectors of modern society, such as residential, commercial, industrial, transport, and automotive. Moreover, RACHP also have an important environmental impact due to the working fluids that deplete the stratospheric ozone layer, which are being phased out according to the Montreal Protocol (1989). Last, but not least, high global working potential (GWP), working fluids (directly), and energy consumption (indirectly) are responsible for a non-negligible quota of greenhouse gas (GHG) emissions in the atmosphere, thus impacting climate change.
demand side management (DSM) --- energy efficiency --- energy storage --- demand response (DR) --- flexibility --- R744 transcritical booster --- subcritical booster --- cascade --- parallel compression --- ejector --- commercial/retail refrigeration --- HVAC --- pressure based control --- damper control --- static pressure reset --- CO2 reset --- demand-based control --- energy saving --- human well-being --- IAQ --- Atomic Air --- air conditioning --- chiller --- CO2 --- commercial refrigeration --- heat pump --- heat recovery --- industrial refrigeration --- R744 --- transcritical vapor-compression system --- two-phase ejector --- domestic refrigerator --- consumer habits --- energy consumption --- good practices --- surveys --- ground source heat pump --- tropical climate --- horizontal heat exchanger --- district cooling --- liquid to compressed natural gas --- thermal energy storage --- LNG --- ground source heat pumps --- low GWP refrigerants --- energy analysis --- R410A --- R32 --- R454B
Choose an application
Refrigeration, air conditioning, and heat pumps (RACHP) have an important impact on the final energy uses of many sectors of modern society, such as residential, commercial, industrial, transport, and automotive. Moreover, RACHP also have an important environmental impact due to the working fluids that deplete the stratospheric ozone layer, which are being phased out according to the Montreal Protocol (1989). Last, but not least, high global working potential (GWP), working fluids (directly), and energy consumption (indirectly) are responsible for a non-negligible quota of greenhouse gas (GHG) emissions in the atmosphere, thus impacting climate change.
History of engineering & technology --- demand side management (DSM) --- energy efficiency --- energy storage --- demand response (DR) --- flexibility --- R744 transcritical booster --- subcritical booster --- cascade --- parallel compression --- ejector --- commercial/retail refrigeration --- HVAC --- pressure based control --- damper control --- static pressure reset --- CO2 reset --- demand-based control --- energy saving --- human well-being --- IAQ --- Atomic Air --- air conditioning --- chiller --- CO2 --- commercial refrigeration --- heat pump --- heat recovery --- industrial refrigeration --- R744 --- transcritical vapor-compression system --- two-phase ejector --- domestic refrigerator --- consumer habits --- energy consumption --- good practices --- surveys --- ground source heat pump --- tropical climate --- horizontal heat exchanger --- district cooling --- liquid to compressed natural gas --- thermal energy storage --- LNG --- ground source heat pumps --- low GWP refrigerants --- energy analysis --- R410A --- R32 --- R454B --- demand side management (DSM) --- energy efficiency --- energy storage --- demand response (DR) --- flexibility --- R744 transcritical booster --- subcritical booster --- cascade --- parallel compression --- ejector --- commercial/retail refrigeration --- HVAC --- pressure based control --- damper control --- static pressure reset --- CO2 reset --- demand-based control --- energy saving --- human well-being --- IAQ --- Atomic Air --- air conditioning --- chiller --- CO2 --- commercial refrigeration --- heat pump --- heat recovery --- industrial refrigeration --- R744 --- transcritical vapor-compression system --- two-phase ejector --- domestic refrigerator --- consumer habits --- energy consumption --- good practices --- surveys --- ground source heat pump --- tropical climate --- horizontal heat exchanger --- district cooling --- liquid to compressed natural gas --- thermal energy storage --- LNG --- ground source heat pumps --- low GWP refrigerants --- energy analysis --- R410A --- R32 --- R454B
Choose an application
The Special Issue “Refrigeration Systems and Applications” aims to encourage researchers to address the concerns associated with climate change and the sustainability of artificial cold production systems, and to further the transition to the more sustainable technologies and methodologies of tomorrow through theoretical, experimental, and review research on the different applications of refrigeration and associated topics.
artificial neural network --- P-? indicator diagram --- r1234ze(e) --- experimental --- ethylene-glycol nanofluids --- HFO --- magneto-caloric effect --- thermodynamic analysis --- HVAC --- refrigerant reclamation --- domestic refrigeration system --- distillation --- R-410A --- energy efficiency --- energy consumption --- LiCl-H2O --- acetoxy silicone rubber --- exergy analysis --- two-phase ejector --- modelling --- Cu nanofluids --- off-design behaviors --- eddy currents --- heat transfer --- phase change material --- r1234yf --- superheating --- irreversibility --- gadolinium --- CFD --- artificial neural network (ANN) --- CO2 --- chiller energy consumption --- vapor compression system --- thermal energy storage --- heat pump --- nanofluids --- thermodynamic performance --- transiting exergy --- caloric cooling --- solid-state cooling --- LiBr-H2O --- parasitic heat load --- hydraulic turbine --- calculation model --- magnetic refrigeration --- coefficient of performance --- transcritical system --- magnetocaloric effect --- LaFe13 ? x ? yCoxSiy --- twin-screw refrigeration compressor --- absorption refrigeration system --- thermal load --- ejector refrigeration technology --- barocaloric
Listing 1 - 4 of 4 |
Sort by
|