Listing 1 - 6 of 6 |
Sort by
|
Choose an application
Crystals --- Vanadium pentoxide --- Vanadium oxide
Choose an application
Crystals --- Vanadium pentoxide. --- Vanadium oxide. --- Defects.
Choose an application
Energy-band theory of solids. --- Vanadium pentoxide. --- Metallic films.
Choose an application
Pursuing a scalable production methodology for materials and advancing it from the laboratory to industry is beneficial to novel daily-life applications. From this perspective, chemical vapor deposition (CVD) offers a compromise between efficiency, controllability, tunability and excellent run-to-run repeatability in the coverage of monolayers on substrates. Hence, CVD meets all of the requirements for industrialization in basically all areas, including polymer coatings, metals, water-filtration systems, solar cells and so on. The Special Issue “Advances in Chemical Vapor Deposition” is dedicated to providing an overview of the latest experimental findings and identifying the growth parameters and characteristics of perovskites, TiO2, Al2O3, VO2 and V2O5 with desired qualities for potentially useful devices.
Technology: general issues --- APCVD --- VO2 --- processing parameters --- 2D --- chemical vapor deposition --- atomic layer deposition --- aluminum oxide --- aluminum tri-sec-butoxide --- thin film --- carbon nanotubes --- residual gas adsorption --- residual gas desorption --- field emission --- atmospheric pressure CVD --- low pressure CVD --- hybrid CVD --- aerosol assisted CVD --- pulsed CVD --- perovskite photovoltaic nanomaterials --- stabilization --- structural design --- performance optimization --- solar cells --- anatase single crystals --- process-induced nanostructures --- competitive growth --- pp-MOCVD --- vanadium pentoxide --- electrochromic --- spray pyrolysis --- ammonium metavanadate --- CVD --- electrochromism --- perovskite photovoltaic materials --- TiO2 --- Al2O3 --- V2O5 --- computational fluid dynamics --- APCVD --- VO2 --- processing parameters --- 2D --- chemical vapor deposition --- atomic layer deposition --- aluminum oxide --- aluminum tri-sec-butoxide --- thin film --- carbon nanotubes --- residual gas adsorption --- residual gas desorption --- field emission --- atmospheric pressure CVD --- low pressure CVD --- hybrid CVD --- aerosol assisted CVD --- pulsed CVD --- perovskite photovoltaic nanomaterials --- stabilization --- structural design --- performance optimization --- solar cells --- anatase single crystals --- process-induced nanostructures --- competitive growth --- pp-MOCVD --- vanadium pentoxide --- electrochromic --- spray pyrolysis --- ammonium metavanadate --- CVD --- electrochromism --- perovskite photovoltaic materials --- TiO2 --- Al2O3 --- V2O5 --- computational fluid dynamics
Choose an application
Pursuing a scalable production methodology for materials and advancing it from the laboratory to industry is beneficial to novel daily-life applications. From this perspective, chemical vapor deposition (CVD) offers a compromise between efficiency, controllability, tunability and excellent run-to-run repeatability in the coverage of monolayers on substrates. Hence, CVD meets all of the requirements for industrialization in basically all areas, including polymer coatings, metals, water-filtration systems, solar cells and so on. The Special Issue “Advances in Chemical Vapor Deposition” is dedicated to providing an overview of the latest experimental findings and identifying the growth parameters and characteristics of perovskites, TiO2, Al2O3, VO2 and V2O5 with desired qualities for potentially useful devices.
Technology: general issues --- APCVD --- VO2 --- processing parameters --- 2D --- chemical vapor deposition --- atomic layer deposition --- aluminum oxide --- aluminum tri-sec-butoxide --- thin film --- carbon nanotubes --- residual gas adsorption --- residual gas desorption --- field emission --- atmospheric pressure CVD --- low pressure CVD --- hybrid CVD --- aerosol assisted CVD --- pulsed CVD --- perovskite photovoltaic nanomaterials --- stabilization --- structural design --- performance optimization --- solar cells --- anatase single crystals --- process-induced nanostructures --- competitive growth --- pp-MOCVD --- vanadium pentoxide --- electrochromic --- spray pyrolysis --- ammonium metavanadate --- CVD --- electrochromism --- perovskite photovoltaic materials --- TiO2 --- Al2O3 --- V2O5 --- computational fluid dynamics
Choose an application
Pursuing a scalable production methodology for materials and advancing it from the laboratory to industry is beneficial to novel daily-life applications. From this perspective, chemical vapor deposition (CVD) offers a compromise between efficiency, controllability, tunability and excellent run-to-run repeatability in the coverage of monolayers on substrates. Hence, CVD meets all of the requirements for industrialization in basically all areas, including polymer coatings, metals, water-filtration systems, solar cells and so on. The Special Issue “Advances in Chemical Vapor Deposition” is dedicated to providing an overview of the latest experimental findings and identifying the growth parameters and characteristics of perovskites, TiO2, Al2O3, VO2 and V2O5 with desired qualities for potentially useful devices.
APCVD --- VO2 --- processing parameters --- 2D --- chemical vapor deposition --- atomic layer deposition --- aluminum oxide --- aluminum tri-sec-butoxide --- thin film --- carbon nanotubes --- residual gas adsorption --- residual gas desorption --- field emission --- atmospheric pressure CVD --- low pressure CVD --- hybrid CVD --- aerosol assisted CVD --- pulsed CVD --- perovskite photovoltaic nanomaterials --- stabilization --- structural design --- performance optimization --- solar cells --- anatase single crystals --- process-induced nanostructures --- competitive growth --- pp-MOCVD --- vanadium pentoxide --- electrochromic --- spray pyrolysis --- ammonium metavanadate --- CVD --- electrochromism --- perovskite photovoltaic materials --- TiO2 --- Al2O3 --- V2O5 --- computational fluid dynamics
Listing 1 - 6 of 6 |
Sort by
|