Listing 1 - 7 of 7 |
Sort by
|
Choose an application
"Once referred to as Toronto's "accidental wilderness," Tommy Thompson Park is now recognized as a fortuitous urban miracle. Initially created as a landfill site on the city's rapidly developing waterfront, the park's physical and ecological footprint have grown dramatically. Forests, grasslands, and wildlife now thrive - all within a stone's throw of some of the most densely populated areas of North America's fourth-largest city. Accidental Wilderness is a rich and lyrical collection of essays curated by internationally recognized landscape architect and original designer of Tommy Thompson Park, Walter H. Kehm, complemented by a stunning collection of photographs by renowned landscape photographer Robert Burley. The book explores the city's port origins; the park's master plan principles and design; the native-plant succession process; the park's unique flora and fauna; public advocacy; and public recreation in the park and its effect on mental, physical, and spiritual health. In an era where the looming dangers associated with climate change affect our daily lives, Tommy Thompson Park offers a hopeful narrative about how nature can flourish in, and contribute to, the well-being of twenty-first-century cities."--
Natural history --- Ontario --- bird. --- ecological. --- habitat. --- landscape. --- nature. --- park. --- photography. --- planning. --- recreation. --- recycling. --- sanctuaries. --- sustainable. --- urban waste. --- urban. --- waterfront design. --- wetlands. --- wildlife.
Choose an application
This book is dedicated to the use of nanomaterials for the modification of asphalt binders, and to investigate whether or not the use of nanomaterials for asphalt mixtures fabrication achieves more effective asphalt pavement layers. A total of 10 contributions are included. Four are related to “Binder’s modification” and five to “Asphalt mixtures’ modification”. The remaining contribution is a review of the effects of the modifications on nanomaterials, particularly nanosilica, nanoclays and nanoiron, on the performance of asphalt mixtures. The published group of papers fosters awareness about the use of nanomaterials to modify asphalt mixtures to obtain more performant and durable flexible road pavements.
Graphene nano-platelets (GNPs) --- asphalt --- Scanning Electron Microscope (SEM) --- structural performance --- functional performance --- nanomaterials --- life cycle assessment --- nano-modified asphalt materials --- environmental impact --- spring-thaw season --- freeze-thaw cycle --- Nanomaterial modifier --- nano hydrophobic silane silica --- property improvement --- seasonally frozen region --- aggregate-bitumen interface --- bond strength --- nano titanium dioxide --- epoxy emulsified asphalt --- photocatalysis --- exhaust gas degradation --- modified asphalt mixtures --- polymers --- rheological behavior --- fatigue cracking --- permanent deformation --- modified bitumen --- nanosilica --- nanoclay --- nanoiron --- asphalt mixtures --- mechanical performance --- aging sensitivity --- ageing --- plastic film --- urban waste --- moisture --- indirect tensile strength --- graphene nanoplatelets (GNPs) --- EAF steel slag --- microwave heating --- self-healing --- Asphalt modification --- modifier chemistry --- long-term aging --- asphalt rheology --- phase angle --- delta Tc --- n/a
Choose an application
This book is dedicated to the use of nanomaterials for the modification of asphalt binders, and to investigate whether or not the use of nanomaterials for asphalt mixtures fabrication achieves more effective asphalt pavement layers. A total of 10 contributions are included. Four are related to “Binder’s modification” and five to “Asphalt mixtures’ modification”. The remaining contribution is a review of the effects of the modifications on nanomaterials, particularly nanosilica, nanoclays and nanoiron, on the performance of asphalt mixtures. The published group of papers fosters awareness about the use of nanomaterials to modify asphalt mixtures to obtain more performant and durable flexible road pavements.
History of engineering & technology --- Graphene nano-platelets (GNPs) --- asphalt --- Scanning Electron Microscope (SEM) --- structural performance --- functional performance --- nanomaterials --- life cycle assessment --- nano-modified asphalt materials --- environmental impact --- spring-thaw season --- freeze-thaw cycle --- Nanomaterial modifier --- nano hydrophobic silane silica --- property improvement --- seasonally frozen region --- aggregate-bitumen interface --- bond strength --- nano titanium dioxide --- epoxy emulsified asphalt --- photocatalysis --- exhaust gas degradation --- modified asphalt mixtures --- polymers --- rheological behavior --- fatigue cracking --- permanent deformation --- modified bitumen --- nanosilica --- nanoclay --- nanoiron --- asphalt mixtures --- mechanical performance --- aging sensitivity --- ageing --- plastic film --- urban waste --- moisture --- indirect tensile strength --- graphene nanoplatelets (GNPs) --- EAF steel slag --- microwave heating --- self-healing --- Asphalt modification --- modifier chemistry --- long-term aging --- asphalt rheology --- phase angle --- delta Tc
Choose an application
This book is dedicated to the use of nanomaterials for the modification of asphalt binders, and to investigate whether or not the use of nanomaterials for asphalt mixtures fabrication achieves more effective asphalt pavement layers. A total of 10 contributions are included. Four are related to “Binder’s modification” and five to “Asphalt mixtures’ modification”. The remaining contribution is a review of the effects of the modifications on nanomaterials, particularly nanosilica, nanoclays and nanoiron, on the performance of asphalt mixtures. The published group of papers fosters awareness about the use of nanomaterials to modify asphalt mixtures to obtain more performant and durable flexible road pavements.
History of engineering & technology --- Graphene nano-platelets (GNPs) --- asphalt --- Scanning Electron Microscope (SEM) --- structural performance --- functional performance --- nanomaterials --- life cycle assessment --- nano-modified asphalt materials --- environmental impact --- spring-thaw season --- freeze-thaw cycle --- Nanomaterial modifier --- nano hydrophobic silane silica --- property improvement --- seasonally frozen region --- aggregate-bitumen interface --- bond strength --- nano titanium dioxide --- epoxy emulsified asphalt --- photocatalysis --- exhaust gas degradation --- modified asphalt mixtures --- polymers --- rheological behavior --- fatigue cracking --- permanent deformation --- modified bitumen --- nanosilica --- nanoclay --- nanoiron --- asphalt mixtures --- mechanical performance --- aging sensitivity --- ageing --- plastic film --- urban waste --- moisture --- indirect tensile strength --- graphene nanoplatelets (GNPs) --- EAF steel slag --- microwave heating --- self-healing --- Asphalt modification --- modifier chemistry --- long-term aging --- asphalt rheology --- phase angle --- delta Tc --- n/a
Choose an application
Amidst impending climate change and enhanced pollution levels around the globe, the need of the hour is to develop bio-based materials that are sustainable and possess comparable performance properties to their synthetic counterparts. In light of the aforementioned, numerous investigations are being conducted to identify, process, and create materials that are concurrently innocuous towards the environment and have superior properties. This book is a collection of such scientific articles that propagate novel ideas for the development of polymeric composite materials, which have application potential in numerous fields such as medicine, automobile, aviation, construction, etc. It also contains a pedagogical article that proposes some strategies to continue experimental research during pandemics. This book will provide readers a quick glance into recent developments regarding polymeric materials and will encourage them to propagate these research ideas further.
History of engineering & technology --- solid urban waste --- formaldehyde --- durability --- electrical properties --- mechanical properties --- recycling --- epoxy resin --- flammability --- heat release rate --- microscale combustion calorimetry --- multiple linear regression --- adaptive neuro-fuzzy inference system --- polyvinyl alcohol (PVA) --- bionanocomposites --- nanomechanical behaviour --- thin films --- particle size --- model free --- model fitting --- avrami–eroféev --- DAEM --- superhydrophobic surfaces --- self-healing --- natural hierarchical microstructures --- wood --- bio-composite --- linear low density polyethylene --- performance --- straws --- biocomposites --- nanofibers --- electrospinning --- cell culture --- graphene oxide --- barrier properties --- poly(lactic acid) --- clay --- nanocomposite --- permeability --- bacterial cellulose --- metal organic framework --- adsorption --- chitosan --- composite nanofibers --- silk fibroin --- polycaprolactone --- Taguchi --- rheological properties --- DMA --- injection molding --- thermal properties --- natural fibers --- biochar --- carbon fillers --- nanocomposites --- flame retardants --- fire --- n/a --- PHB --- natural fiber --- compatibilizer --- cellulose --- biocomposite --- avrami-eroféev
Choose an application
Amidst impending climate change and enhanced pollution levels around the globe, the need of the hour is to develop bio-based materials that are sustainable and possess comparable performance properties to their synthetic counterparts. In light of the aforementioned, numerous investigations are being conducted to identify, process, and create materials that are concurrently innocuous towards the environment and have superior properties. This book is a collection of such scientific articles that propagate novel ideas for the development of polymeric composite materials, which have application potential in numerous fields such as medicine, automobile, aviation, construction, etc. It also contains a pedagogical article that proposes some strategies to continue experimental research during pandemics. This book will provide readers a quick glance into recent developments regarding polymeric materials and will encourage them to propagate these research ideas further.
solid urban waste --- formaldehyde --- durability --- electrical properties --- mechanical properties --- recycling --- epoxy resin --- flammability --- heat release rate --- microscale combustion calorimetry --- multiple linear regression --- adaptive neuro-fuzzy inference system --- polyvinyl alcohol (PVA) --- bionanocomposites --- nanomechanical behaviour --- thin films --- particle size --- model free --- model fitting --- avrami–eroféev --- DAEM --- superhydrophobic surfaces --- self-healing --- natural hierarchical microstructures --- wood --- bio-composite --- linear low density polyethylene --- performance --- straws --- biocomposites --- nanofibers --- electrospinning --- cell culture --- graphene oxide --- barrier properties --- poly(lactic acid) --- clay --- nanocomposite --- permeability --- bacterial cellulose --- metal organic framework --- adsorption --- chitosan --- composite nanofibers --- silk fibroin --- polycaprolactone --- Taguchi --- rheological properties --- DMA --- injection molding --- thermal properties --- natural fibers --- biochar --- carbon fillers --- nanocomposites --- flame retardants --- fire --- n/a --- PHB --- natural fiber --- compatibilizer --- cellulose --- biocomposite --- avrami-eroféev
Choose an application
Amidst impending climate change and enhanced pollution levels around the globe, the need of the hour is to develop bio-based materials that are sustainable and possess comparable performance properties to their synthetic counterparts. In light of the aforementioned, numerous investigations are being conducted to identify, process, and create materials that are concurrently innocuous towards the environment and have superior properties. This book is a collection of such scientific articles that propagate novel ideas for the development of polymeric composite materials, which have application potential in numerous fields such as medicine, automobile, aviation, construction, etc. It also contains a pedagogical article that proposes some strategies to continue experimental research during pandemics. This book will provide readers a quick glance into recent developments regarding polymeric materials and will encourage them to propagate these research ideas further.
History of engineering & technology --- solid urban waste --- formaldehyde --- durability --- electrical properties --- mechanical properties --- recycling --- epoxy resin --- flammability --- heat release rate --- microscale combustion calorimetry --- multiple linear regression --- adaptive neuro-fuzzy inference system --- polyvinyl alcohol (PVA) --- bionanocomposites --- nanomechanical behaviour --- thin films --- particle size --- model free --- model fitting --- avrami-eroféev --- DAEM --- superhydrophobic surfaces --- self-healing --- natural hierarchical microstructures --- wood --- bio-composite --- linear low density polyethylene --- performance --- straws --- biocomposites --- nanofibers --- electrospinning --- cell culture --- graphene oxide --- barrier properties --- poly(lactic acid) --- clay --- nanocomposite --- permeability --- bacterial cellulose --- metal organic framework --- adsorption --- chitosan --- composite nanofibers --- silk fibroin --- polycaprolactone --- Taguchi --- rheological properties --- DMA --- injection molding --- thermal properties --- natural fibers --- biochar --- carbon fillers --- nanocomposites --- flame retardants --- fire --- PHB --- natural fiber --- compatibilizer --- cellulose --- biocomposite
Listing 1 - 7 of 7 |
Sort by
|