Listing 1 - 4 of 4 |
Sort by
|
Choose an application
This book is relevant to architects, urban designers, planners, and policy makers concerned with enhancing climate-sensitive urban form and planning. It discusses building and neighborhood design: layout and design features that maximize energy efficiency and thermal comfort without compromising the ability of other buildings to enjoy similar benefits; the use of interstitial spaces (piazzas, streets, and parks) to improve the microclimate at the neighbourhood-level; design intervention case studies; innovative uses of interstitial spaces to improve the local climate at the neighborhood level; and urban radiative cooling solutions to mitigate the unintended climate consequences of urban growth and suggestions for ways forward.
Research & information: general --- Technology: general issues --- Thermodynamics & heat --- cooling effect --- urban park --- thermal comfort --- physiological equivalent temperature --- perceived thermal comfort --- urban heat island --- air temperature --- sustainable cities --- smart cities --- urban health --- global warming --- urban green spaces --- sustainable urban development --- climate change mitigation and adaptation --- urban resilience --- heatwaves --- urban overheating --- urban heat island intensity --- energy budget equation --- sensible heat flux --- latent heat flux --- advective heat flux --- Australian climatic conditions --- coastal cities --- desert climate --- surface urban heat island effect --- land use/land cover --- partial least square regression --- nonlinear programming --- Shanghai --- China --- urban form --- urban microclimate design --- city --- sustainability --- sustainable development --- cool roof --- passive radiative cooling --- metamaterials --- prototype
Choose an application
This book is relevant to architects, urban designers, planners, and policy makers concerned with enhancing climate-sensitive urban form and planning. It discusses building and neighborhood design: layout and design features that maximize energy efficiency and thermal comfort without compromising the ability of other buildings to enjoy similar benefits; the use of interstitial spaces (piazzas, streets, and parks) to improve the microclimate at the neighbourhood-level; design intervention case studies; innovative uses of interstitial spaces to improve the local climate at the neighborhood level; and urban radiative cooling solutions to mitigate the unintended climate consequences of urban growth and suggestions for ways forward.
cooling effect --- urban park --- thermal comfort --- physiological equivalent temperature --- perceived thermal comfort --- urban heat island --- air temperature --- sustainable cities --- smart cities --- urban health --- global warming --- urban green spaces --- sustainable urban development --- climate change mitigation and adaptation --- urban resilience --- heatwaves --- urban overheating --- urban heat island intensity --- energy budget equation --- sensible heat flux --- latent heat flux --- advective heat flux --- Australian climatic conditions --- coastal cities --- desert climate --- surface urban heat island effect --- land use/land cover --- partial least square regression --- nonlinear programming --- Shanghai --- China --- urban form --- urban microclimate design --- city --- sustainability --- sustainable development --- cool roof --- passive radiative cooling --- metamaterials --- prototype
Choose an application
This book is relevant to architects, urban designers, planners, and policy makers concerned with enhancing climate-sensitive urban form and planning. It discusses building and neighborhood design: layout and design features that maximize energy efficiency and thermal comfort without compromising the ability of other buildings to enjoy similar benefits; the use of interstitial spaces (piazzas, streets, and parks) to improve the microclimate at the neighbourhood-level; design intervention case studies; innovative uses of interstitial spaces to improve the local climate at the neighborhood level; and urban radiative cooling solutions to mitigate the unintended climate consequences of urban growth and suggestions for ways forward.
Research & information: general --- Technology: general issues --- Thermodynamics & heat --- cooling effect --- urban park --- thermal comfort --- physiological equivalent temperature --- perceived thermal comfort --- urban heat island --- air temperature --- sustainable cities --- smart cities --- urban health --- global warming --- urban green spaces --- sustainable urban development --- climate change mitigation and adaptation --- urban resilience --- heatwaves --- urban overheating --- urban heat island intensity --- energy budget equation --- sensible heat flux --- latent heat flux --- advective heat flux --- Australian climatic conditions --- coastal cities --- desert climate --- surface urban heat island effect --- land use/land cover --- partial least square regression --- nonlinear programming --- Shanghai --- China --- urban form --- urban microclimate design --- city --- sustainability --- sustainable development --- cool roof --- passive radiative cooling --- metamaterials --- prototype --- cooling effect --- urban park --- thermal comfort --- physiological equivalent temperature --- perceived thermal comfort --- urban heat island --- air temperature --- sustainable cities --- smart cities --- urban health --- global warming --- urban green spaces --- sustainable urban development --- climate change mitigation and adaptation --- urban resilience --- heatwaves --- urban overheating --- urban heat island intensity --- energy budget equation --- sensible heat flux --- latent heat flux --- advective heat flux --- Australian climatic conditions --- coastal cities --- desert climate --- surface urban heat island effect --- land use/land cover --- partial least square regression --- nonlinear programming --- Shanghai --- China --- urban form --- urban microclimate design --- city --- sustainability --- sustainable development --- cool roof --- passive radiative cooling --- metamaterials --- prototype
Choose an application
Land surface phenology (LSP) uses remote sensing to monitor seasonal dynamics in vegetated land surfaces and retrieve phenological metrics (transition dates, rate of change, annual integrals, etc.). LSP has developed rapidly in the last few decades. Both regional and global LSP products have been routinely generated and play prominent roles in modeling crop yield, ecological surveillance, identifying invasive species, modeling the terrestrial biosphere, and assessing impacts on urban and natural ecosystems. Recent advances in field and spaceborne sensor technologies, as well as data fusion techniques, have enabled novel LSP retrieval algorithms that refine retrievals at even higher spatiotemporal resolutions, providing new insights into ecosystem dynamics. Meanwhile, rigorous assessment of the uncertainties in LSP retrievals is ongoing, and efforts to reduce these uncertainties represent an active research area. Open source software and hardware are in development, and have greatly facilitated the use of LSP metrics by scientists outside the remote sensing community. This reprint covers the latest developments in sensor technologies, LSP retrieval algorithms and validation strategies, and the use of LSP products in a variety of fields. It aims to summarize the ongoing diverse LSP developments and boost discussions on future research prospects.
Technology: general issues --- History of engineering & technology --- Environmental science, engineering & technology --- climate change --- digital camera --- MODIS --- Mongolian oak --- phenology --- sap flow --- urbanization --- plant phenology --- spatiotemporal patterns --- structural equation model --- Google Earth Engine --- Three-River Headwaters region --- GPP --- carbon cycle --- arctic --- photosynthesis --- remote sensing --- crop sowing date --- development stage --- yield gap --- yield potential --- process-based model --- land surface temperature --- urban heat island effect --- contribution --- Hangzhou --- land surface phenology --- NDVI --- spatiotemporal dynamics --- different drivers --- random forest model --- data suitability --- satellite data --- spatial scaling effects --- the Loess Plateau --- autumn phenology --- turning point --- climate changes --- human activities --- Qinghai-Tibetan Plateau --- snow phenology --- driving factors --- spatiotemporal variations --- Northeast China --- vegetation indexes --- seasonally dry tropical forest --- vegetation phenology --- climatic limitation --- solar-induced chlorophyll fluorescence --- enhanced vegetation index --- gross primary production --- evapotranspiration --- water use efficiency --- NDPI --- Qilian Mountains --- snow cover --- high elevation --- soil moisture --- vegetation dynamics --- carbon exchange --- n/a
Listing 1 - 4 of 4 |
Sort by
|