Narrow your search
Listing 1 - 10 of 19 << page
of 2
>>
Sort by

Book
Insights Into Brown Adipose Tissue Functions and Browning Phenomenon
Authors: --- ---
Year: 2020 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact


Book
Insights Into Brown Adipose Tissue Functions and Browning Phenomenon
Authors: --- ---
Year: 2020 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact


Book
Insights Into Brown Adipose Tissue Functions and Browning Phenomenon
Authors: --- ---
Year: 2020 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact


Book
Hormonal and Neuroendocrine Regulation of Energy Balance
Authors: ---
Year: 2016 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Alteration in adequate energy balance maintenance results in serious disturbances such as obesity and its related metabolic disorders. In Mammals, energy balance is homeostatically controlled through hormonal and neuroendocrine systems which cooperation is based on cross-talk between central and peripheral signals. The hypothalamus as well as peripheral hormones among which adipokines from adipose tissue and thyroid hormones play a crucial role in energy homeostasis. Unraveling the physiological, cellular and molecular mechanisms through which hormonal and neuroendocrine systems regulate energy balance has been a long-standing challenge in biology and is now more necessary when considering the world-wide increasing prevalence of obesity. Indeed, recognizing and understanding the biochemical and nutrient signaling pathways contributing to the nervous and endocrine integration of physiological mechanisms involved in the normal and/or abnormal regulation of energy balance is fundamental also to the development of new, effective, and targeted treatments for obesity. Recent studies have highlighted the role of hypothalamic pro-opiomelanocortin-expressing neurons in the regulation of energy homeostasis by controlling energy expenditure and food intake. This is accomplished through a precise balance of production and degradation of a-melanocyte-stimulating hormone, an anorexigenic neuropeptide which is degraded to an inactive form unable to inhibit food intake by the key enzyme prolyl carboxypeptidase (PRCP), thus suggesting that pharmacologic approaches targeting PRCP may provide a novel and effective option for the management of obesity and its associated metabolic disorders. Indeed, efforts have been made to generate potent, brain-penetrant PRCP inhibitors. Weight loss due to negative energy balance is a goal for obese subjects not always reachable by dietary caloric restriction or increased physical activity. Lipid-lowering therapies have been suggested to have potential benefits, however, the establishment of comprehensive therapeutic strategies is still awaited. Recently, it has been reported that thyroid hormone (TH)- derivatives such as 3,5-diiodothyronine and 3-iodothyronamine possess interesting biological activities, opening new perspectives in thyroid physiology and TH derivatives therapeutic usage. Moreover, several studies, focusing on the interaction between thyroid hormone (TH), the autonomic nervous system and the liver, revealed an important role for the hypothalamus in the differential effects of TH on autonomic outflow to peripheral organs controlling energy balance. This Research Topic aims to give a comprehensive and integrate view of the factors involved in the endocrine and neuroendocrine signaling in energy balance regulation to highlight their involvement into physiological processes and regulatory systems as well as their perturbation during pathological processes.


Book
Hormonal and Neuroendocrine Regulation of Energy Balance
Authors: ---
Year: 2016 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Alteration in adequate energy balance maintenance results in serious disturbances such as obesity and its related metabolic disorders. In Mammals, energy balance is homeostatically controlled through hormonal and neuroendocrine systems which cooperation is based on cross-talk between central and peripheral signals. The hypothalamus as well as peripheral hormones among which adipokines from adipose tissue and thyroid hormones play a crucial role in energy homeostasis. Unraveling the physiological, cellular and molecular mechanisms through which hormonal and neuroendocrine systems regulate energy balance has been a long-standing challenge in biology and is now more necessary when considering the world-wide increasing prevalence of obesity. Indeed, recognizing and understanding the biochemical and nutrient signaling pathways contributing to the nervous and endocrine integration of physiological mechanisms involved in the normal and/or abnormal regulation of energy balance is fundamental also to the development of new, effective, and targeted treatments for obesity. Recent studies have highlighted the role of hypothalamic pro-opiomelanocortin-expressing neurons in the regulation of energy homeostasis by controlling energy expenditure and food intake. This is accomplished through a precise balance of production and degradation of a-melanocyte-stimulating hormone, an anorexigenic neuropeptide which is degraded to an inactive form unable to inhibit food intake by the key enzyme prolyl carboxypeptidase (PRCP), thus suggesting that pharmacologic approaches targeting PRCP may provide a novel and effective option for the management of obesity and its associated metabolic disorders. Indeed, efforts have been made to generate potent, brain-penetrant PRCP inhibitors. Weight loss due to negative energy balance is a goal for obese subjects not always reachable by dietary caloric restriction or increased physical activity. Lipid-lowering therapies have been suggested to have potential benefits, however, the establishment of comprehensive therapeutic strategies is still awaited. Recently, it has been reported that thyroid hormone (TH)- derivatives such as 3,5-diiodothyronine and 3-iodothyronamine possess interesting biological activities, opening new perspectives in thyroid physiology and TH derivatives therapeutic usage. Moreover, several studies, focusing on the interaction between thyroid hormone (TH), the autonomic nervous system and the liver, revealed an important role for the hypothalamus in the differential effects of TH on autonomic outflow to peripheral organs controlling energy balance. This Research Topic aims to give a comprehensive and integrate view of the factors involved in the endocrine and neuroendocrine signaling in energy balance regulation to highlight their involvement into physiological processes and regulatory systems as well as their perturbation during pathological processes.


Book
Hormonal and Neuroendocrine Regulation of Energy Balance
Authors: ---
Year: 2016 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Alteration in adequate energy balance maintenance results in serious disturbances such as obesity and its related metabolic disorders. In Mammals, energy balance is homeostatically controlled through hormonal and neuroendocrine systems which cooperation is based on cross-talk between central and peripheral signals. The hypothalamus as well as peripheral hormones among which adipokines from adipose tissue and thyroid hormones play a crucial role in energy homeostasis. Unraveling the physiological, cellular and molecular mechanisms through which hormonal and neuroendocrine systems regulate energy balance has been a long-standing challenge in biology and is now more necessary when considering the world-wide increasing prevalence of obesity. Indeed, recognizing and understanding the biochemical and nutrient signaling pathways contributing to the nervous and endocrine integration of physiological mechanisms involved in the normal and/or abnormal regulation of energy balance is fundamental also to the development of new, effective, and targeted treatments for obesity. Recent studies have highlighted the role of hypothalamic pro-opiomelanocortin-expressing neurons in the regulation of energy homeostasis by controlling energy expenditure and food intake. This is accomplished through a precise balance of production and degradation of a-melanocyte-stimulating hormone, an anorexigenic neuropeptide which is degraded to an inactive form unable to inhibit food intake by the key enzyme prolyl carboxypeptidase (PRCP), thus suggesting that pharmacologic approaches targeting PRCP may provide a novel and effective option for the management of obesity and its associated metabolic disorders. Indeed, efforts have been made to generate potent, brain-penetrant PRCP inhibitors. Weight loss due to negative energy balance is a goal for obese subjects not always reachable by dietary caloric restriction or increased physical activity. Lipid-lowering therapies have been suggested to have potential benefits, however, the establishment of comprehensive therapeutic strategies is still awaited. Recently, it has been reported that thyroid hormone (TH)- derivatives such as 3,5-diiodothyronine and 3-iodothyronamine possess interesting biological activities, opening new perspectives in thyroid physiology and TH derivatives therapeutic usage. Moreover, several studies, focusing on the interaction between thyroid hormone (TH), the autonomic nervous system and the liver, revealed an important role for the hypothalamus in the differential effects of TH on autonomic outflow to peripheral organs controlling energy balance. This Research Topic aims to give a comprehensive and integrate view of the factors involved in the endocrine and neuroendocrine signaling in energy balance regulation to highlight their involvement into physiological processes and regulatory systems as well as their perturbation during pathological processes.


Book
Redox Imbalance and Mitochondrial Abnormalities in Kidney Disease
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The kidney performs important functions in the human body and can inflict either acute kidney injury (AKI) or chronic kidney disease (CKD). AKI can be induced by kidney ischemia, drugs such as cisplatin, and heavy metals such as cadmium and arsenic. CKD can be induced by drugs, heavy metals, hypertension, and diabetes, as well as cancer. Importantly, nearly all kidney disorders have been shown to involve redox imbalance, reductive stress, oxidative stress, and mitochondrial abnormalities such as impaired mitochondrial homeostasis, including disrupted mitophagy and deranged mitochondrial unfolded protein responses. Understanding how these redox-related dysregulated pathways operate may give us new insights into how to design novel approaches to fighting kidney disease. This Special Issue of Biomolecules entitled “Redox imbalance and mitochondrial abnormalities in kidney disease” covers a variety of topics focusing on oxidative stress, mitochondrial dysfunction, and antioxidation enhancement implicated in kidney disease or kidney transplantation.


Book
Redox Imbalance and Mitochondrial Abnormalities in Kidney Disease
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The kidney performs important functions in the human body and can inflict either acute kidney injury (AKI) or chronic kidney disease (CKD). AKI can be induced by kidney ischemia, drugs such as cisplatin, and heavy metals such as cadmium and arsenic. CKD can be induced by drugs, heavy metals, hypertension, and diabetes, as well as cancer. Importantly, nearly all kidney disorders have been shown to involve redox imbalance, reductive stress, oxidative stress, and mitochondrial abnormalities such as impaired mitochondrial homeostasis, including disrupted mitophagy and deranged mitochondrial unfolded protein responses. Understanding how these redox-related dysregulated pathways operate may give us new insights into how to design novel approaches to fighting kidney disease. This Special Issue of Biomolecules entitled “Redox imbalance and mitochondrial abnormalities in kidney disease” covers a variety of topics focusing on oxidative stress, mitochondrial dysfunction, and antioxidation enhancement implicated in kidney disease or kidney transplantation.


Book
Light on peacemaking : a guide to appropriate dispute resolution and mediating family conflict
Author:
ISBN: 1631573128 Year: 2016 Publisher: New York, New York (222 East 46th Street, New York, NY 10017) : Business Expert Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Many books have been written about the practice of peacemaking, and few, if any, contribute to the non-violent, spiritual side of this ancient science, discipline, practice and art form. This book speaks to that lack and explores the spiritual, non-violent element in peacemaking as it applies to appropriate dispute resolution and mediating family law disputes. Universities will find the book helpful as a textbook in their peacemaking and mediation degree and certificate programs. This book is intended for the professional peacemaker, mediator, lawyer, law student, conciliator, and dispute neutral. Everyday people wishing to improve their own communication skills and strengthen their primary relationships will profit greatly from this book. Those in the family law field, will find much benefit from the peacemaking processes, family counseling psychology, Eastern philosophy and Yoga, collected wisdom, experience and practice pointers presented in Light on Peacemaking. Mental health family practitioners, who are often called upon to act as default, if not, formal mediators and neutrals, will find useful the mediation and peacemaking experiences, techniques and literature related here. Light on Peacemaking also offers the Yoga practitioner a very practical avenue, through example in the legal field, for engaging in seva or service to humanity.


Book
Redox Imbalance and Mitochondrial Abnormalities in Kidney Disease
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The kidney performs important functions in the human body and can inflict either acute kidney injury (AKI) or chronic kidney disease (CKD). AKI can be induced by kidney ischemia, drugs such as cisplatin, and heavy metals such as cadmium and arsenic. CKD can be induced by drugs, heavy metals, hypertension, and diabetes, as well as cancer. Importantly, nearly all kidney disorders have been shown to involve redox imbalance, reductive stress, oxidative stress, and mitochondrial abnormalities such as impaired mitochondrial homeostasis, including disrupted mitophagy and deranged mitochondrial unfolded protein responses. Understanding how these redox-related dysregulated pathways operate may give us new insights into how to design novel approaches to fighting kidney disease. This Special Issue of Biomolecules entitled “Redox imbalance and mitochondrial abnormalities in kidney disease” covers a variety of topics focusing on oxidative stress, mitochondrial dysfunction, and antioxidation enhancement implicated in kidney disease or kidney transplantation.

Listing 1 - 10 of 19 << page
of 2
>>
Sort by