Narrow your search

Library

KU Leuven (6)

LUCA School of Arts (6)

Odisee (6)

Thomas More Kempen (6)

Thomas More Mechelen (6)

UCLL (6)

ULiège (6)

VIVES (6)

FARO (5)

Vlaams Parlement (5)

More...

Resource type

book (12)


Language

English (12)


Year
From To Submit

2022 (2)

2021 (3)

2020 (2)

2019 (4)

2018 (1)

Listing 1 - 10 of 12 << page
of 2
>>
Sort by

Book
Selected Papers from the 16th International Conference on Squeezed States and Uncertainty Relations (ICSSUR 2019)
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The first quantum revolution started in the early 20th century and gave us new rules that govern physical reality. Accordingly, many devices that changed dramatically our lifestyle, such as transistors, medical scanners and lasers, appeared in the market. This was the origin of quantum technology, which allows us to organize and control the components of a complex system governed by the laws of quantum physics. This is in sharp contrast to conventional technology, which can only be understood within the framework of classical mechanics. We are now in the middle of a second quantum revolution. Although quantum mechanics is nowadays a mature discipline, quantum engineering as a technology is now emerging in its own right. We are about to manipulate and sense individual particles, measuring and exploiting their quantum properties. This is bringing major technical advances in many different areas, including computing, sensors, simulations, cryptography and telecommunications. The present collection of selected papers is a clear demonstration of the tremendous vitality of the field. The issue is composed of contributions from world leading researchers in quantum optics and quantum information, and presents viewpoints, both theoretical and experimental, on a variety of modern problems.

Keywords

entangled states --- two atoms --- two-modes --- cavity QED setup --- entanglement --- interference phenomenon --- superposition of quantum states --- quantum tomograms --- quantum optics --- nonclassicality --- quantum resource theories --- non-Gaussianity --- photon-number-resolving detectors --- multiport devices --- Fock states --- quantum tomography --- photon losses --- relativistic dynamics --- no-interaction theorem --- world line condition --- circular gauge --- Landau gauge --- arbitrary linear gauge --- stepwise variation --- center-of-orbit coordinates --- relative coordinates --- elliptic and hyperbolic solenoids --- angular momentum --- magnetic moment --- squeezing --- mutually unbiased bases --- group representations --- graphs --- quantum information --- E = mc2 from Heisenberg’s uncertainty relations --- one symmetry for quantum mechanics and special relativity --- coherent states --- harmonic oscillator --- SU(2) coherent states --- 2D coherent states --- resolution of the identity --- uncertainty principle --- isotropic harmonic oscillator --- anisotropic harmonic oscillator --- Sudarshan --- apology --- non-hermitian operators --- real spectrum --- nonlinear algebras --- nonclassical states --- bound entanglement --- entanglement witness --- Hilbert–Schmidt measure --- optimization algorithms --- probability representation --- quantizer–dequantizer --- qubit --- quantum suprematism --- n/a --- E = mc2 from Heisenberg's uncertainty relations --- Hilbert-Schmidt measure --- quantizer-dequantizer --- Research.


Book
Quantum Foundations. 90 Years of Uncertainty
Authors: --- --- ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The name of Joseph Fourier is also inseparable from the study of the mathematics of heat. Modern research on heat equations explores the extension of the classical diffusion equation on Riemannian, sub-Riemannian manifolds, and Lie groups. In parallel, in geometric mechanics, Jean-Marie Souriau interpreted the temperature vector of Planck as a space-time vector, obtaining, in this way, a phenomenological model of continuous media, which presents some interesting properties.


Book
Quantum Foundations. 90 Years of Uncertainty
Authors: --- --- ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The name of Joseph Fourier is also inseparable from the study of the mathematics of heat. Modern research on heat equations explores the extension of the classical diffusion equation on Riemannian, sub-Riemannian manifolds, and Lie groups. In parallel, in geometric mechanics, Jean-Marie Souriau interpreted the temperature vector of Planck as a space-time vector, obtaining, in this way, a phenomenological model of continuous media, which presents some interesting properties.


Book
Quantum Foundations. 90 Years of Uncertainty
Authors: --- --- ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The name of Joseph Fourier is also inseparable from the study of the mathematics of heat. Modern research on heat equations explores the extension of the classical diffusion equation on Riemannian, sub-Riemannian manifolds, and Lie groups. In parallel, in geometric mechanics, Jean-Marie Souriau interpreted the temperature vector of Planck as a space-time vector, obtaining, in this way, a phenomenological model of continuous media, which presents some interesting properties.

Keywords

entanglement indicators --- generalized uncertainty principle --- Tsallis entropy --- linear entropy --- quantum-classical relationship --- Wigner–Yanase–Dyson skew information --- deep learning --- spinors in quantum and classical physics --- quantum mechanics --- entropy --- original Bell inequality --- Bohmian dynamics --- qudit states --- square integrable --- uncertainty relation --- quantum bound --- uncertainty relations --- foundations of quantum mechanics --- Born probability rule --- Rényi entropy --- energy quantization --- quantum foundations --- Born rule --- measure of classicality --- minimal observable length --- quantum information --- Kochen–Specker theorem --- neuromorphic computing --- bell inequalities --- successive measurements --- Gleason theorem --- continuous variables --- quantum memory --- perfect correlation/anticorrelation --- quantum trajectory --- quantum computing --- high performance computing --- Quantum Hamilton-Jacobi Formalism --- quantum uncertainty --- entanglement indicators --- generalized uncertainty principle --- Tsallis entropy --- linear entropy --- quantum-classical relationship --- Wigner–Yanase–Dyson skew information --- deep learning --- spinors in quantum and classical physics --- quantum mechanics --- entropy --- original Bell inequality --- Bohmian dynamics --- qudit states --- square integrable --- uncertainty relation --- quantum bound --- uncertainty relations --- foundations of quantum mechanics --- Born probability rule --- Rényi entropy --- energy quantization --- quantum foundations --- Born rule --- measure of classicality --- minimal observable length --- quantum information --- Kochen–Specker theorem --- neuromorphic computing --- bell inequalities --- successive measurements --- Gleason theorem --- continuous variables --- quantum memory --- perfect correlation/anticorrelation --- quantum trajectory --- quantum computing --- high performance computing --- Quantum Hamilton-Jacobi Formalism --- quantum uncertainty


Book
The Statistical Foundations of Entropy
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In the last two decades, the understanding of complex dynamical systems underwent important conceptual shifts. The catalyst was the infusion of new ideas from the theory of critical phenomena (scaling laws, renormalization group, etc.), (multi)fractals and trees, random matrix theory, network theory, and non-Shannonian information theory. The usual Boltzmann–Gibbs statistics were proven to be grossly inadequate in this context. While successful in describing stationary systems characterized by ergodicity or metric transitivity, Boltzmann–Gibbs statistics fail to reproduce the complex statistical behavior of many real-world systems in biology, astrophysics, geology, and the economic and social sciences.The aim of this Special Issue was to extend the state of the art by original contributions that could contribute to an ongoing discussion on the statistical foundations of entropy, with a particular emphasis on non-conventional entropies that go significantly beyond Boltzmann, Gibbs, and Shannon paradigms. The accepted contributions addressed various aspects including information theoretic, thermodynamic and quantum aspects of complex systems and found several important applications of generalized entropies in various systems.

Keywords

Research & information: general --- Mathematics & science --- ecological inference --- generalized cross entropy --- distributional weighted regression --- matrix adjustment --- entropy --- critical phenomena --- renormalization --- multiscale thermodynamics --- GENERIC --- non-Newtonian calculus --- non-Diophantine arithmetic --- Kolmogorov-Nagumo averages --- escort probabilities --- generalized entropies --- maximum entropy principle --- MaxEnt distribution --- calibration invariance --- Lagrange multipliers --- generalized Bilal distribution --- adaptive Type-II progressive hybrid censoring scheme --- maximum likelihood estimation --- Bayesian estimation --- Lindley's approximation --- confidence interval --- Markov chain Monte Carlo method --- Rényi entropy --- Tsallis entropy --- entropic uncertainty relations --- quantum metrology --- non-equilibrium thermodynamics --- variational entropy --- rényi entropy --- tsallis entropy --- landsberg-vedral entropy --- gaussian entropy --- sharma-mittal entropy --- α-mutual information --- α-channel capacity --- maximum entropy --- Bayesian inference --- updating probabilities --- ecological inference --- generalized cross entropy --- distributional weighted regression --- matrix adjustment --- entropy --- critical phenomena --- renormalization --- multiscale thermodynamics --- GENERIC --- non-Newtonian calculus --- non-Diophantine arithmetic --- Kolmogorov-Nagumo averages --- escort probabilities --- generalized entropies --- maximum entropy principle --- MaxEnt distribution --- calibration invariance --- Lagrange multipliers --- generalized Bilal distribution --- adaptive Type-II progressive hybrid censoring scheme --- maximum likelihood estimation --- Bayesian estimation --- Lindley's approximation --- confidence interval --- Markov chain Monte Carlo method --- Rényi entropy --- Tsallis entropy --- entropic uncertainty relations --- quantum metrology --- non-equilibrium thermodynamics --- variational entropy --- rényi entropy --- tsallis entropy --- landsberg-vedral entropy --- gaussian entropy --- sharma-mittal entropy --- α-mutual information --- α-channel capacity --- maximum entropy --- Bayesian inference --- updating probabilities


Book
Quantum Nonlocality
Author:
ISBN: 303897949X 3038979481 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book presents the current views of leading physicists on the bizarre property of quantum theory: nonlocality. Einstein viewed this theory as “spooky action at a distance” which, together with randomness, resulted in him being unable to accept quantum theory. The contributions in the book describe, in detail, the bizarre aspects of nonlocality, such as Einstein–Podolsky–Rosen steering and quantum teleportation—a phenomenon which cannot be explained in the framework of classical physics, due its foundations in quantum entanglement. The contributions describe the role of nonlocality in the rapidly developing field of quantum information. Nonlocal quantum effects in various systems, from solid-state quantum devices to organic molecules in proteins, are discussed. The most surprising papers in this book challenge the concept of the nonlocality of Nature, and look for possible modifications, extensions, and new formulations—from retrocausality to novel types of multiple-world theories. These attempts have not yet been fully successful, but they provide hope for modifying quantum theory according to Einstein’s vision.


Book
Causation in Science
Author:
ISBN: 1400889294 9781400889297 9780691174938 0691174938 9780691174938 Year: 2018 Publisher: Princeton, NJ

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book explores the role of causal constraints in science, shifting our attention from causal relations between individual events--the focus of most philosophical treatments of causation-to a broad family of concepts and principles generating constraints on possible change. Yemima Ben-Menahem looks at determinism, locality, stability, symmetry principles, conservation laws, and the principle of least action-causal constraints that serve to distinguish events and processes that our best scientific theories mandate or allow from those they rule out.Ben-Menahem's approach reveals that causation is just as relevant to explaining why certain events fail to occur as it is to explaining events that do occur. She investigates the conceptual differences between, and interrelations of, members of the causal family, thereby clarifying problems at the heart of the philosophy of science. Ben-Menahem argues that the distinction between determinism and stability is pertinent to the philosophy of history and the foundations of statistical mechanics, and that the interplay of determinism and locality is crucial for understanding quantum mechanics. Providing historical perspective, she traces the causal constraints of contemporary science to traditional intuitions about causation, and demonstrates how the teleological appearance of some constraints is explained away in current scientific theories such as quantum mechanics.Causation in Science represents a bold challenge to both causal eliminativism and causal reductionism-the notions that causation has no place in science and that higher-level causal claims are reducible to the causal claims of fundamental physics.


Book
The Statistical Foundations of Entropy
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In the last two decades, the understanding of complex dynamical systems underwent important conceptual shifts. The catalyst was the infusion of new ideas from the theory of critical phenomena (scaling laws, renormalization group, etc.), (multi)fractals and trees, random matrix theory, network theory, and non-Shannonian information theory. The usual Boltzmann–Gibbs statistics were proven to be grossly inadequate in this context. While successful in describing stationary systems characterized by ergodicity or metric transitivity, Boltzmann–Gibbs statistics fail to reproduce the complex statistical behavior of many real-world systems in biology, astrophysics, geology, and the economic and social sciences.The aim of this Special Issue was to extend the state of the art by original contributions that could contribute to an ongoing discussion on the statistical foundations of entropy, with a particular emphasis on non-conventional entropies that go significantly beyond Boltzmann, Gibbs, and Shannon paradigms. The accepted contributions addressed various aspects including information theoretic, thermodynamic and quantum aspects of complex systems and found several important applications of generalized entropies in various systems.


Book
Selected Papers from the 16th International Conference on Squeezed States and Uncertainty Relations (ICSSUR 2019)
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The first quantum revolution started in the early 20th century and gave us new rules that govern physical reality. Accordingly, many devices that changed dramatically our lifestyle, such as transistors, medical scanners and lasers, appeared in the market. This was the origin of quantum technology, which allows us to organize and control the components of a complex system governed by the laws of quantum physics. This is in sharp contrast to conventional technology, which can only be understood within the framework of classical mechanics. We are now in the middle of a second quantum revolution. Although quantum mechanics is nowadays a mature discipline, quantum engineering as a technology is now emerging in its own right. We are about to manipulate and sense individual particles, measuring and exploiting their quantum properties. This is bringing major technical advances in many different areas, including computing, sensors, simulations, cryptography and telecommunications. The present collection of selected papers is a clear demonstration of the tremendous vitality of the field. The issue is composed of contributions from world leading researchers in quantum optics and quantum information, and presents viewpoints, both theoretical and experimental, on a variety of modern problems.

Keywords

Research. --- entangled states --- two atoms --- two-modes --- cavity QED setup --- entanglement --- interference phenomenon --- superposition of quantum states --- quantum tomograms --- quantum optics --- nonclassicality --- quantum resource theories --- non-Gaussianity --- photon-number-resolving detectors --- multiport devices --- Fock states --- quantum tomography --- photon losses --- relativistic dynamics --- no-interaction theorem --- world line condition --- circular gauge --- Landau gauge --- arbitrary linear gauge --- stepwise variation --- center-of-orbit coordinates --- relative coordinates --- elliptic and hyperbolic solenoids --- angular momentum --- magnetic moment --- squeezing --- mutually unbiased bases --- group representations --- graphs --- quantum information --- E = mc2 from Heisenberg's uncertainty relations --- one symmetry for quantum mechanics and special relativity --- coherent states --- harmonic oscillator --- SU(2) coherent states --- 2D coherent states --- resolution of the identity --- uncertainty principle --- isotropic harmonic oscillator --- anisotropic harmonic oscillator --- Sudarshan --- apology --- non-hermitian operators --- real spectrum --- nonlinear algebras --- nonclassical states --- bound entanglement --- entanglement witness --- Hilbert-Schmidt measure --- optimization algorithms --- probability representation --- quantizer-dequantizer --- qubit --- quantum suprematism --- entangled states --- two atoms --- two-modes --- cavity QED setup --- entanglement --- interference phenomenon --- superposition of quantum states --- quantum tomograms --- quantum optics --- nonclassicality --- quantum resource theories --- non-Gaussianity --- photon-number-resolving detectors --- multiport devices --- Fock states --- quantum tomography --- photon losses --- relativistic dynamics --- no-interaction theorem --- world line condition --- circular gauge --- Landau gauge --- arbitrary linear gauge --- stepwise variation --- center-of-orbit coordinates --- relative coordinates --- elliptic and hyperbolic solenoids --- angular momentum --- magnetic moment --- squeezing --- mutually unbiased bases --- group representations --- graphs --- quantum information --- E = mc2 from Heisenberg's uncertainty relations --- one symmetry for quantum mechanics and special relativity --- coherent states --- harmonic oscillator --- SU(2) coherent states --- 2D coherent states --- resolution of the identity --- uncertainty principle --- isotropic harmonic oscillator --- anisotropic harmonic oscillator --- Sudarshan --- apology --- non-hermitian operators --- real spectrum --- nonlinear algebras --- nonclassical states --- bound entanglement --- entanglement witness --- Hilbert-Schmidt measure --- optimization algorithms --- probability representation --- quantizer-dequantizer --- qubit --- quantum suprematism


Book
Quantum Transport in Mesoscopic Systems
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Mesoscopic physics deals with systems larger than single atoms but small enough to retain their quantum properties. The possibility to create and manipulate conductors of the nanometer scale has given birth to a set of phenomena that have revolutionized physics: quantum Hall effects, persistent currents, weak localization, Coulomb blockade, etc. This Special Issue tackles the latest developments in the field. Contributors discuss time-dependent transport, quantum pumping, nanoscale heat engines and motors, molecular junctions, electron–electron correlations in confined systems, quantum thermo-electrics and current fluctuations. The works included herein represent an up-to-date account of exciting research with a broad impact in both fundamental and applied topics.

Keywords

Technology: general issues --- quantum transport --- quantum interference --- shot noise --- persistent current --- mesoscale and nanoscale physics --- Complementary Metal Oxide Semiconductor (CMOS) technology --- electron quantum optics --- photo-assisted noise --- charge and heat fluctuations --- time-dependent transport --- electron–photon coupling --- open quantum systems --- phonon transport --- nanostructured materials --- green’s functions --- density-functional tight binding --- Landauer approach, time-dependent transport --- graphene nanoribbons --- nonequilibrium Green’s function --- electronic transport --- thermal transport --- strongly correlated systems --- Landauer-Büttiker formalism --- Boltzmann transport equation --- time-dependent density functional theory --- electron–phonon coupling --- molecular junctions --- thermoelectric properties --- electron–vibration interactions --- electron–electron interactions --- thermoelectricity --- heat engines --- mesoscopic physics --- fluctuations --- thermodynamic uncertainty relations --- quantum thermodynamics --- steady-state dynamics --- nonlinear transport --- adiabatic quantum motors --- adiabatic quantum pumps --- quantum heat engines --- quantum refrigerators --- transport through quantum dots --- spin pump --- spin-orbit interaction --- quantum adiabatic pump --- interferometer --- geometric phase --- nonadiabaticity --- quantum heat pumping --- spin pumping --- relaxation --- time evolution --- quantum information --- entropy production --- Renyi entropy --- superconducting proximity effect --- Kondo effect --- spin polarization --- Anreev reflection --- conditional states --- conditional wavefunction --- Markovian and Non-Markovian dynamics --- stochastic Schrödinger equation --- quantum electron transport --- quantum dots --- fluctuation–dissipation theorem --- Onsager relations --- dynamics of strongly correlated quantum systems --- quantum capacitor --- local fermi liquids --- kondo effect --- coulomb blockade --- mesoscopic systems --- nanophysics --- quantum noise --- quantum pumping --- thermoelectrics --- heat transport --- quantum transport --- quantum interference --- shot noise --- persistent current --- mesoscale and nanoscale physics --- Complementary Metal Oxide Semiconductor (CMOS) technology --- electron quantum optics --- photo-assisted noise --- charge and heat fluctuations --- time-dependent transport --- electron–photon coupling --- open quantum systems --- phonon transport --- nanostructured materials --- green’s functions --- density-functional tight binding --- Landauer approach, time-dependent transport --- graphene nanoribbons --- nonequilibrium Green’s function --- electronic transport --- thermal transport --- strongly correlated systems --- Landauer-Büttiker formalism --- Boltzmann transport equation --- time-dependent density functional theory --- electron–phonon coupling --- molecular junctions --- thermoelectric properties --- electron–vibration interactions --- electron–electron interactions --- thermoelectricity --- heat engines --- mesoscopic physics --- fluctuations --- thermodynamic uncertainty relations --- quantum thermodynamics --- steady-state dynamics --- nonlinear transport --- adiabatic quantum motors --- adiabatic quantum pumps --- quantum heat engines --- quantum refrigerators --- transport through quantum dots --- spin pump --- spin-orbit interaction --- quantum adiabatic pump --- interferometer --- geometric phase --- nonadiabaticity --- quantum heat pumping --- spin pumping --- relaxation --- time evolution --- quantum information --- entropy production --- Renyi entropy --- superconducting proximity effect --- Kondo effect --- spin polarization --- Anreev reflection --- conditional states --- conditional wavefunction --- Markovian and Non-Markovian dynamics --- stochastic Schrödinger equation --- quantum electron transport --- quantum dots --- fluctuation–dissipation theorem --- Onsager relations --- dynamics of strongly correlated quantum systems --- quantum capacitor --- local fermi liquids --- kondo effect --- coulomb blockade --- mesoscopic systems --- nanophysics --- quantum noise --- quantum pumping --- thermoelectrics --- heat transport

Listing 1 - 10 of 12 << page
of 2
>>
Sort by