Narrow your search

Library

FARO (5)

KU Leuven (5)

LUCA School of Arts (5)

Odisee (5)

Thomas More Kempen (5)

Thomas More Mechelen (5)

UCLL (5)

ULB (5)

ULiège (5)

VIVES (5)

More...

Resource type

book (9)


Language

English (9)


Year
From To Submit

2022 (3)

2021 (3)

2019 (3)

Listing 1 - 9 of 9
Sort by

Book
High Performance Concrete
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The innovations in construction materials that have been made due to the development of different varieties of concrete have led to innovations in structural applications and design. This Special Issue mainly focuses on state-of-the-art research progress in high-performance concrete, including the effect and characteristics of fibers on the properties of high-performance concrete, the CO2 curing efficiency of high-performance cement composites, and the effect of nano materials when used in ultra-high-performance concrete. This Special Issue also contains two comprehensive review articles covering the following topics: the role of supplementary cementitious materials in ultra-high-performance concrete and recent progress in nanomaterials in cement-based materials. Readers working towards conducting research on innovative construction materials will be exposed to findings related to this topic in this Special Issue.

Keywords

Technology: general issues --- History of engineering & technology --- ultrahigh-performance concrete --- nanosilica --- dynamic light scattering --- zeta potential --- pore solution --- alkali-activator --- GGBFS --- Na2O content --- Ms (SiO2/Na2O) --- workability --- setting time --- steel fiber --- fiber content --- aspect ratio --- toughness index --- high-strength concrete --- fibers --- smart materials --- fiber/matrix bond --- physical properties --- heat treatment --- alkali-activated material --- calcium sulfoaluminate-based expansive additive --- concrete shrinkage --- modulus of elasticity --- shrinkage stress --- SIFRCC --- fiber volume fraction --- direct tensile strength --- energy absorption capacity --- direct tensile test --- carbon nanotubes --- cement-based materials --- concrete infrastructure --- graphene --- graphene oxide --- mechanical strength --- nanomaterials --- nano-Al2O3 --- nano-Fe2O3 --- nano-SiO2 --- nano-TiO2 --- smart infrastructure --- slurry-infiltrated fiber-reinforced cementitious composite --- high-performance fiber-reinforced cementitious composite --- compressive stress --- stress-strain relationship --- filling slurry matrix --- bio-slime --- sulfate attack --- chloride attack --- service life --- multi-layer diffusion --- repair --- concrete --- dynamic compression --- Split Hopkinson Pressure Bars (SPHB) --- brittle materials --- simulation --- calcined zeolite sand --- ultra-high-performance concrete --- pre-wetted --- autogenous shrinkage --- internal curing --- reactive powder concrete --- strength --- basalt fibers --- abrasion --- porosity --- microscopic image processing --- X-ray CT analysis --- porous cementitious materials --- 3D tomographic image --- CO2 curing --- size effect --- colloidal silica --- cement-based material --- casting method --- ultra-high performance fiber-reinforced concrete --- densified silica fume --- agglomeration --- pozzolanic reaction --- densification --- alternative alkali-activated material --- ground granulated blast-furnace slag --- strength development --- CSA expansive additive --- ultrasonic pulse velocity --- temperature --- high performance concrete (HPC) --- C-shape magnetic probe test --- fibre orientation angle --- flexural test --- attenuation factor --- ultra-high-performance steel fiber-reinforced concrete --- multiscale finite element modeling --- multi-point constraint --- multi-scale interface connection --- concrete damage plasticity model --- ABAQUS --- ultra high-performance concrete (UHPC) --- supplementary cementitious materials (SCMs) --- sustainability --- compressive strength --- flowability --- shrinkage --- railway sleeper --- static bending test --- numerical simulation --- structural performance --- high performance fiber reinforced concrete (HPFRC) --- polypropylene fiber (PP) --- polyvinyl alcohol fiber (PVA) --- residual flexural strength --- splitting tensile strength --- ultrahigh-performance concrete --- nanosilica --- dynamic light scattering --- zeta potential --- pore solution --- alkali-activator --- GGBFS --- Na2O content --- Ms (SiO2/Na2O) --- workability --- setting time --- steel fiber --- fiber content --- aspect ratio --- toughness index --- high-strength concrete --- fibers --- smart materials --- fiber/matrix bond --- physical properties --- heat treatment --- alkali-activated material --- calcium sulfoaluminate-based expansive additive --- concrete shrinkage --- modulus of elasticity --- shrinkage stress --- SIFRCC --- fiber volume fraction --- direct tensile strength --- energy absorption capacity --- direct tensile test --- carbon nanotubes --- cement-based materials --- concrete infrastructure --- graphene --- graphene oxide --- mechanical strength --- nanomaterials --- nano-Al2O3 --- nano-Fe2O3 --- nano-SiO2 --- nano-TiO2 --- smart infrastructure --- slurry-infiltrated fiber-reinforced cementitious composite --- high-performance fiber-reinforced cementitious composite --- compressive stress --- stress-strain relationship --- filling slurry matrix --- bio-slime --- sulfate attack --- chloride attack --- service life --- multi-layer diffusion --- repair --- concrete --- dynamic compression --- Split Hopkinson Pressure Bars (SPHB) --- brittle materials --- simulation --- calcined zeolite sand --- ultra-high-performance concrete --- pre-wetted --- autogenous shrinkage --- internal curing --- reactive powder concrete --- strength --- basalt fibers --- abrasion --- porosity --- microscopic image processing --- X-ray CT analysis --- porous cementitious materials --- 3D tomographic image --- CO2 curing --- size effect --- colloidal silica --- cement-based material --- casting method --- ultra-high performance fiber-reinforced concrete --- densified silica fume --- agglomeration --- pozzolanic reaction --- densification --- alternative alkali-activated material --- ground granulated blast-furnace slag --- strength development --- CSA expansive additive --- ultrasonic pulse velocity --- temperature --- high performance concrete (HPC) --- C-shape magnetic probe test --- fibre orientation angle --- flexural test --- attenuation factor --- ultra-high-performance steel fiber-reinforced concrete --- multiscale finite element modeling --- multi-point constraint --- multi-scale interface connection --- concrete damage plasticity model --- ABAQUS --- ultra high-performance concrete (UHPC) --- supplementary cementitious materials (SCMs) --- sustainability --- compressive strength --- flowability --- shrinkage --- railway sleeper --- static bending test --- numerical simulation --- structural performance --- high performance fiber reinforced concrete (HPFRC) --- polypropylene fiber (PP) --- polyvinyl alcohol fiber (PVA) --- residual flexural strength --- splitting tensile strength


Book
High Performance Concrete
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The innovations in construction materials that have been made due to the development of different varieties of concrete have led to innovations in structural applications and design. This Special Issue mainly focuses on state-of-the-art research progress in high-performance concrete, including the effect and characteristics of fibers on the properties of high-performance concrete, the CO2 curing efficiency of high-performance cement composites, and the effect of nano materials when used in ultra-high-performance concrete. This Special Issue also contains two comprehensive review articles covering the following topics: the role of supplementary cementitious materials in ultra-high-performance concrete and recent progress in nanomaterials in cement-based materials. Readers working towards conducting research on innovative construction materials will be exposed to findings related to this topic in this Special Issue.

Keywords

Technology: general issues --- History of engineering & technology --- ultrahigh-performance concrete --- nanosilica --- dynamic light scattering --- zeta potential --- pore solution --- alkali-activator --- GGBFS --- Na2O content --- Ms (SiO2/Na2O) --- workability --- setting time --- steel fiber --- fiber content --- aspect ratio --- toughness index --- high-strength concrete --- fibers --- smart materials --- fiber/matrix bond --- physical properties --- heat treatment --- alkali-activated material --- calcium sulfoaluminate-based expansive additive --- concrete shrinkage --- modulus of elasticity --- shrinkage stress --- SIFRCC --- fiber volume fraction --- direct tensile strength --- energy absorption capacity --- direct tensile test --- carbon nanotubes --- cement-based materials --- concrete infrastructure --- graphene --- graphene oxide --- mechanical strength --- nanomaterials --- nano-Al2O3 --- nano-Fe2O3 --- nano-SiO2 --- nano-TiO2 --- smart infrastructure --- slurry-infiltrated fiber-reinforced cementitious composite --- high-performance fiber-reinforced cementitious composite --- compressive stress --- stress-strain relationship --- filling slurry matrix --- bio-slime --- sulfate attack --- chloride attack --- service life --- multi-layer diffusion --- repair --- concrete --- dynamic compression --- Split Hopkinson Pressure Bars (SPHB) --- brittle materials --- simulation --- calcined zeolite sand --- ultra-high-performance concrete --- pre-wetted --- autogenous shrinkage --- internal curing --- reactive powder concrete --- strength --- basalt fibers --- abrasion --- porosity --- microscopic image processing --- X-ray CT analysis --- porous cementitious materials --- 3D tomographic image --- CO2 curing --- size effect --- colloidal silica --- cement-based material --- casting method --- ultra-high performance fiber-reinforced concrete --- densified silica fume --- agglomeration --- pozzolanic reaction --- densification --- alternative alkali-activated material --- ground granulated blast-furnace slag --- strength development --- CSA expansive additive --- ultrasonic pulse velocity --- temperature --- high performance concrete (HPC) --- C-shape magnetic probe test --- fibre orientation angle --- flexural test --- attenuation factor --- ultra-high-performance steel fiber-reinforced concrete --- multiscale finite element modeling --- multi-point constraint --- multi-scale interface connection --- concrete damage plasticity model --- ABAQUS --- ultra high-performance concrete (UHPC) --- supplementary cementitious materials (SCMs) --- sustainability --- compressive strength --- flowability --- shrinkage --- railway sleeper --- static bending test --- numerical simulation --- structural performance --- high performance fiber reinforced concrete (HPFRC) --- polypropylene fiber (PP) --- polyvinyl alcohol fiber (PVA) --- residual flexural strength --- splitting tensile strength


Book
High Performance Concrete
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The innovations in construction materials that have been made due to the development of different varieties of concrete have led to innovations in structural applications and design. This Special Issue mainly focuses on state-of-the-art research progress in high-performance concrete, including the effect and characteristics of fibers on the properties of high-performance concrete, the CO2 curing efficiency of high-performance cement composites, and the effect of nano materials when used in ultra-high-performance concrete. This Special Issue also contains two comprehensive review articles covering the following topics: the role of supplementary cementitious materials in ultra-high-performance concrete and recent progress in nanomaterials in cement-based materials. Readers working towards conducting research on innovative construction materials will be exposed to findings related to this topic in this Special Issue.

Keywords

ultrahigh-performance concrete --- nanosilica --- dynamic light scattering --- zeta potential --- pore solution --- alkali-activator --- GGBFS --- Na2O content --- Ms (SiO2/Na2O) --- workability --- setting time --- steel fiber --- fiber content --- aspect ratio --- toughness index --- high-strength concrete --- fibers --- smart materials --- fiber/matrix bond --- physical properties --- heat treatment --- alkali-activated material --- calcium sulfoaluminate-based expansive additive --- concrete shrinkage --- modulus of elasticity --- shrinkage stress --- SIFRCC --- fiber volume fraction --- direct tensile strength --- energy absorption capacity --- direct tensile test --- carbon nanotubes --- cement-based materials --- concrete infrastructure --- graphene --- graphene oxide --- mechanical strength --- nanomaterials --- nano-Al2O3 --- nano-Fe2O3 --- nano-SiO2 --- nano-TiO2 --- smart infrastructure --- slurry-infiltrated fiber-reinforced cementitious composite --- high-performance fiber-reinforced cementitious composite --- compressive stress --- stress-strain relationship --- filling slurry matrix --- bio-slime --- sulfate attack --- chloride attack --- service life --- multi-layer diffusion --- repair --- concrete --- dynamic compression --- Split Hopkinson Pressure Bars (SPHB) --- brittle materials --- simulation --- calcined zeolite sand --- ultra-high-performance concrete --- pre-wetted --- autogenous shrinkage --- internal curing --- reactive powder concrete --- strength --- basalt fibers --- abrasion --- porosity --- microscopic image processing --- X-ray CT analysis --- porous cementitious materials --- 3D tomographic image --- CO2 curing --- size effect --- colloidal silica --- cement-based material --- casting method --- ultra-high performance fiber-reinforced concrete --- densified silica fume --- agglomeration --- pozzolanic reaction --- densification --- alternative alkali-activated material --- ground granulated blast-furnace slag --- strength development --- CSA expansive additive --- ultrasonic pulse velocity --- temperature --- high performance concrete (HPC) --- C-shape magnetic probe test --- fibre orientation angle --- flexural test --- attenuation factor --- ultra-high-performance steel fiber-reinforced concrete --- multiscale finite element modeling --- multi-point constraint --- multi-scale interface connection --- concrete damage plasticity model --- ABAQUS --- ultra high-performance concrete (UHPC) --- supplementary cementitious materials (SCMs) --- sustainability --- compressive strength --- flowability --- shrinkage --- railway sleeper --- static bending test --- numerical simulation --- structural performance --- high performance fiber reinforced concrete (HPFRC) --- polypropylene fiber (PP) --- polyvinyl alcohol fiber (PVA) --- residual flexural strength --- splitting tensile strength


Book
Innovative Materials for Construction
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Most of the typical materials employed in today’s constructions present limitations, especially concerning their durability, in either common or severe environmental conditions, and their impact on the environment. In response to these issues, academic and industrial efforts around the world have been devoted to developing new smart materials that can provide efficient alternatives, improve the energy efficiency of buildings, or can upgrade, repair, or protect existing infrastructures. Different and wide technological innovations are, therefore, quickly fostering advancements in the field of construction materials. A new generation of materials (bricks, cement, coatings, concrete, FRP, glass, masonry, mortars, nano-materials, PCM, polymers, steel, wood, etc.) is gaining a prominent position in modern building technology, since they can overcome various limits and flaws of conventional materials employed in constructions, without neglecting the smart applications of pioneering materials in ancient constructions and historic buildings. Even though the adoption of innovative materials in the construction field has been a successful route in achieving enhanced performance, or even new and unexpected characteristics, some issues have not been completely solved. On top of them, the cost/performance ratio of novel solutions, since their introduction must be convenient, without compromising quality. Other concerns are related to their sustainability, with eco-friendly options, possibly exploiting recycled materials or by-products from other productions, being the most desirable solution. Finally, the use of materials or systems that are unconventional in this field raises the need to update or develop new specifications and standards. This special issue aims at providing a platform for discussing open issues, challenges, and achievements related to innovative materials proposed for the construction industry.

Keywords

Research & information: general --- Technology: general issues --- isogrid --- aircraft load-bearing structures --- finite elements method --- nonlinear numerical analyses --- stability --- equilibrium path --- cement --- gypsum --- hydraulic lime --- mechanical properties --- mortars --- phase-change materials (PCM) --- sustainable materials for buildings --- thermal energy storage --- glass fiber-reinforced polymer (GFRP) rebar --- ultra-high-performance concrete (UHPC) --- concrete headed GFRP rebar --- bond strength --- development length --- flexural strength --- precast concrete deck --- material selection --- project performance --- material property --- analytic hierarchy process (AHP) --- building construction --- concrete system form --- phase change material (PCM) --- thermal energy storage (TES) --- thermal properties --- Ca7ZrAl6O18 --- 27Al MAS NMR --- Sr-rich (Sr,C)3AH6 --- cement hydration --- refractories --- immobilization of radioactive Sr --- shrinkage-reducing agent --- compressive strength --- splitting tensile strength --- freezing and thawing --- spacing factor --- cultural heritage --- durability --- mechanical characterization --- retrofitting --- strengthening --- quasi-brittle material --- three-point bending test --- energy fracture --- NHL --- composite material --- jute --- MICP --- ureolytic bacteria --- biocement --- natural plant fiber --- ladle furnace slag --- reclaimed asphalt pavements --- cold in-place recycling --- simple compressive strength --- bitumen emulsion --- waste --- circular economy --- bacteria --- biocementation --- construction --- microbially induced calcium carbonate precipitation --- isogrid --- aircraft load-bearing structures --- finite elements method --- nonlinear numerical analyses --- stability --- equilibrium path --- cement --- gypsum --- hydraulic lime --- mechanical properties --- mortars --- phase-change materials (PCM) --- sustainable materials for buildings --- thermal energy storage --- glass fiber-reinforced polymer (GFRP) rebar --- ultra-high-performance concrete (UHPC) --- concrete headed GFRP rebar --- bond strength --- development length --- flexural strength --- precast concrete deck --- material selection --- project performance --- material property --- analytic hierarchy process (AHP) --- building construction --- concrete system form --- phase change material (PCM) --- thermal energy storage (TES) --- thermal properties --- Ca7ZrAl6O18 --- 27Al MAS NMR --- Sr-rich (Sr,C)3AH6 --- cement hydration --- refractories --- immobilization of radioactive Sr --- shrinkage-reducing agent --- compressive strength --- splitting tensile strength --- freezing and thawing --- spacing factor --- cultural heritage --- durability --- mechanical characterization --- retrofitting --- strengthening --- quasi-brittle material --- three-point bending test --- energy fracture --- NHL --- composite material --- jute --- MICP --- ureolytic bacteria --- biocement --- natural plant fiber --- ladle furnace slag --- reclaimed asphalt pavements --- cold in-place recycling --- simple compressive strength --- bitumen emulsion --- waste --- circular economy --- bacteria --- biocementation --- construction --- microbially induced calcium carbonate precipitation


Book
Innovative Materials for Construction
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Most of the typical materials employed in today’s constructions present limitations, especially concerning their durability, in either common or severe environmental conditions, and their impact on the environment. In response to these issues, academic and industrial efforts around the world have been devoted to developing new smart materials that can provide efficient alternatives, improve the energy efficiency of buildings, or can upgrade, repair, or protect existing infrastructures. Different and wide technological innovations are, therefore, quickly fostering advancements in the field of construction materials. A new generation of materials (bricks, cement, coatings, concrete, FRP, glass, masonry, mortars, nano-materials, PCM, polymers, steel, wood, etc.) is gaining a prominent position in modern building technology, since they can overcome various limits and flaws of conventional materials employed in constructions, without neglecting the smart applications of pioneering materials in ancient constructions and historic buildings. Even though the adoption of innovative materials in the construction field has been a successful route in achieving enhanced performance, or even new and unexpected characteristics, some issues have not been completely solved. On top of them, the cost/performance ratio of novel solutions, since their introduction must be convenient, without compromising quality. Other concerns are related to their sustainability, with eco-friendly options, possibly exploiting recycled materials or by-products from other productions, being the most desirable solution. Finally, the use of materials or systems that are unconventional in this field raises the need to update or develop new specifications and standards. This special issue aims at providing a platform for discussing open issues, challenges, and achievements related to innovative materials proposed for the construction industry.

Keywords

Research & information: general --- Technology: general issues --- isogrid --- aircraft load-bearing structures --- finite elements method --- nonlinear numerical analyses --- stability --- equilibrium path --- cement --- gypsum --- hydraulic lime --- mechanical properties --- mortars --- phase-change materials (PCM) --- sustainable materials for buildings --- thermal energy storage --- glass fiber-reinforced polymer (GFRP) rebar --- ultra-high-performance concrete (UHPC) --- concrete headed GFRP rebar --- bond strength --- development length --- flexural strength --- precast concrete deck --- material selection --- project performance --- material property --- analytic hierarchy process (AHP) --- building construction --- concrete system form --- phase change material (PCM) --- thermal energy storage (TES) --- thermal properties --- Ca7ZrAl6O18 --- 27Al MAS NMR --- Sr-rich (Sr,C)3AH6 --- cement hydration --- refractories --- immobilization of radioactive Sr --- shrinkage-reducing agent --- compressive strength --- splitting tensile strength --- freezing and thawing --- spacing factor --- cultural heritage --- durability --- mechanical characterization --- retrofitting --- strengthening --- quasi-brittle material --- three-point bending test --- energy fracture --- NHL --- composite material --- jute --- MICP --- ureolytic bacteria --- biocement --- natural plant fiber --- ladle furnace slag --- reclaimed asphalt pavements --- cold in-place recycling --- simple compressive strength --- bitumen emulsion --- waste --- circular economy --- bacteria --- biocementation --- construction --- microbially induced calcium carbonate precipitation --- n/a


Book
Innovative Materials for Construction
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Most of the typical materials employed in today’s constructions present limitations, especially concerning their durability, in either common or severe environmental conditions, and their impact on the environment. In response to these issues, academic and industrial efforts around the world have been devoted to developing new smart materials that can provide efficient alternatives, improve the energy efficiency of buildings, or can upgrade, repair, or protect existing infrastructures. Different and wide technological innovations are, therefore, quickly fostering advancements in the field of construction materials. A new generation of materials (bricks, cement, coatings, concrete, FRP, glass, masonry, mortars, nano-materials, PCM, polymers, steel, wood, etc.) is gaining a prominent position in modern building technology, since they can overcome various limits and flaws of conventional materials employed in constructions, without neglecting the smart applications of pioneering materials in ancient constructions and historic buildings. Even though the adoption of innovative materials in the construction field has been a successful route in achieving enhanced performance, or even new and unexpected characteristics, some issues have not been completely solved. On top of them, the cost/performance ratio of novel solutions, since their introduction must be convenient, without compromising quality. Other concerns are related to their sustainability, with eco-friendly options, possibly exploiting recycled materials or by-products from other productions, being the most desirable solution. Finally, the use of materials or systems that are unconventional in this field raises the need to update or develop new specifications and standards. This special issue aims at providing a platform for discussing open issues, challenges, and achievements related to innovative materials proposed for the construction industry.

Keywords

isogrid --- aircraft load-bearing structures --- finite elements method --- nonlinear numerical analyses --- stability --- equilibrium path --- cement --- gypsum --- hydraulic lime --- mechanical properties --- mortars --- phase-change materials (PCM) --- sustainable materials for buildings --- thermal energy storage --- glass fiber-reinforced polymer (GFRP) rebar --- ultra-high-performance concrete (UHPC) --- concrete headed GFRP rebar --- bond strength --- development length --- flexural strength --- precast concrete deck --- material selection --- project performance --- material property --- analytic hierarchy process (AHP) --- building construction --- concrete system form --- phase change material (PCM) --- thermal energy storage (TES) --- thermal properties --- Ca7ZrAl6O18 --- 27Al MAS NMR --- Sr-rich (Sr,C)3AH6 --- cement hydration --- refractories --- immobilization of radioactive Sr --- shrinkage-reducing agent --- compressive strength --- splitting tensile strength --- freezing and thawing --- spacing factor --- cultural heritage --- durability --- mechanical characterization --- retrofitting --- strengthening --- quasi-brittle material --- three-point bending test --- energy fracture --- NHL --- composite material --- jute --- MICP --- ureolytic bacteria --- biocement --- natural plant fiber --- ladle furnace slag --- reclaimed asphalt pavements --- cold in-place recycling --- simple compressive strength --- bitumen emulsion --- waste --- circular economy --- bacteria --- biocementation --- construction --- microbially induced calcium carbonate precipitation --- n/a


Book
Environment-Friendly Construction Materials.
Authors: --- --- ---
ISBN: 3039210173 3039210165 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Construction materials are the most widely used materials for civil infrastructure in our daily lives. However, from an environmental point of view, they consume a huge amount of natural resources and generate the majority of greenhouse gasses. Therefore, many new and novel technologies for designing environmentally friendly construction materials have been developed recently. This Special Issue, “Environment-Friendly Construction Materials”, has been proposed and organized as a means to present recent developments in the field of construction materials. It covers a wide range of selected topics on construction materials.

Keywords

fluorescence spectrum --- microstructure --- regeneration --- sensitivity analysis --- asphalt mixes --- limestone aggregates --- bio-oil --- plateau value of dissipated strain energy ratio --- diatomite --- water-leaching pretreatment --- fatigue performance --- ultra-thin wearing course --- recycling aggregate --- design optimization --- induction heating --- vibration noise consumption --- bitumen --- relaxation --- viscous-elastic temperature --- field evaluation --- healing agents --- transmittance --- Ca-alginate microcapsules --- artificially aged asphalt mixture --- sequencing batch Chlorella reactor --- waste concrete --- plant ash lixivium --- steel fiber --- ultra-high performance concrete --- titanate coupling agent --- SEM --- self-healing --- physical properties --- porous pumice --- thermal–mechanical properties --- aggregate morphology --- asphalt mortar --- adhesion energy --- styrene–butadiene–styrene (SBS) modified bitumen --- water solute exposure --- emulsified asphalt --- demulsification speed --- mineral-asphalt mixtures --- aging processes --- phase change materials --- surface texture --- long-term drying shrinkage --- contact angle --- aging depth --- asphalt --- calcium alginate capsules --- nitrogen and phosphorus removal --- micro-morphology --- rice husk ash --- low-temperature --- cement --- hydrophobic nanosilica --- asphalt mixture --- thickness combinations --- layered double hydroxide --- initial self-healing temperature --- environmentally friendly construction materials --- epoxidized soybean oil --- limestone --- chemical evolutions --- temperature sensitivity characteristics --- micro-surfacing --- cement emulsified asphalt mixture --- dynamic characteristics --- high-strength concrete --- flame retardant --- durability --- creep --- damping --- damage constitutive model --- Ultra-High Performance Concrete (UHPC) --- granite aggregate --- diatomite-modified asphalt mixture --- healing model --- asphalt combustion --- freeze-thaw cycle --- SBS-modified bitumen --- workability --- graphene --- flow behavior index --- fluidity --- parametrization --- fatigue property --- rankinite --- railway application --- crystallization sensitivity --- aqueous solute compositions --- pozzolanic reaction --- self-healing asphalt --- recycled material --- artificial neural network --- rheological properties --- molecular dynamic simulation --- building envelopes --- aluminum hydroxide --- crumb rubber --- optimization --- viscoelasticity --- building energy conservation --- diffusing --- anti-rutting agent --- molecular bridge --- engineered cementitious composites (ECC) --- pavement performance --- morphology --- colloidal structure --- hydrophilic nanosilica --- construction materials --- road engineering --- laboratory evaluation --- rejuvenator --- fatigue equation --- aggregates --- three-point bending fatigue test --- energy-based approach --- aggregate from sanitary ceramic wastes --- polyacrylic acid --- mastic --- CO2 --- specific surface area --- aggregate image measurement system --- solubilizer --- flexibility --- simplex lattice design --- SBS/CRP-modified bitumen --- water stability --- fatigue life --- rejuvenating systems --- skid-resistance --- reclaimed asphalt pavement --- rheology --- hydration characteristic --- surface energy --- modified asphalt materials --- asphalt pavement --- stripping test --- SOD --- tensile stresses --- ultraviolet radiation --- basalt fiber --- “blue-shift” --- polyvinyl alcohol --- sanitary ceramics --- dynamic moduli --- aggregate characteristics --- compound modify --- expanded graphite --- steel slag --- induced healing --- thermal property --- effective heating depth --- dissipated strain energy --- MDA --- mechanical behavior --- plateau value of permanent deformation ratio --- long-term field service --- crack healing --- desulphurization gypsum residues --- pavement failure --- rejuvenation --- interfacial transition zone --- combination --- polyethylene glycol --- adsorption --- tensile strains --- cold recycled asphalt mixture --- resistance to deformations --- asphalt-aggregate adhesion --- viscoelastic properties --- damage evolution --- carbonation --- microwave heating --- amorphous silica --- high-modulus asphalt mixture (HMAM) --- hot mix asphalt containing recycled concrete aggregate --- microfluidic --- dynamic responses --- concrete --- asphalt mastic --- crumb rubber powder --- response surface methodology --- nanomaterial --- self-compacting concrete (SCC) --- rutting factor --- X-ray computed tomography --- fiber modification --- overlay tester --- rubber modified asphalt --- ageing --- aged bitumen --- aged asphalt --- recycling --- damage characteristics --- dynamic tests --- permeation --- ageing resistance


Book
Environment-Friendly Construction Materials.
Authors: --- --- ---
ISBN: 3039210130 3039210122 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Construction materials are the most widely used materials for civil infrastructure in our daily lives. However, from an environmental point of view, they consume a huge amount of natural resources and generate the majority of greenhouse gasses. Therefore, many new and novel technologies for designing environmentally friendly construction materials have been developed recently. This Special Issue, “Environment-Friendly Construction Materials”, has been proposed and organized as a means to present recent developments in the field of construction materials. It covers a wide range of selected topics on construction materials.

Keywords

fluorescence spectrum --- microstructure --- regeneration --- sensitivity analysis --- asphalt mixes --- limestone aggregates --- bio-oil --- plateau value of dissipated strain energy ratio --- diatomite --- water-leaching pretreatment --- fatigue performance --- ultra-thin wearing course --- recycling aggregate --- design optimization --- induction heating --- vibration noise consumption --- bitumen --- relaxation --- viscous-elastic temperature --- field evaluation --- healing agents --- transmittance --- Ca-alginate microcapsules --- artificially aged asphalt mixture --- sequencing batch Chlorella reactor --- waste concrete --- plant ash lixivium --- steel fiber --- ultra-high performance concrete --- titanate coupling agent --- SEM --- self-healing --- physical properties --- porous pumice --- thermal–mechanical properties --- aggregate morphology --- asphalt mortar --- adhesion energy --- styrene–butadiene–styrene (SBS) modified bitumen --- water solute exposure --- emulsified asphalt --- demulsification speed --- mineral-asphalt mixtures --- aging processes --- phase change materials --- surface texture --- long-term drying shrinkage --- contact angle --- aging depth --- asphalt --- calcium alginate capsules --- nitrogen and phosphorus removal --- micro-morphology --- rice husk ash --- low-temperature --- cement --- hydrophobic nanosilica --- asphalt mixture --- thickness combinations --- layered double hydroxide --- initial self-healing temperature --- environmentally friendly construction materials --- epoxidized soybean oil --- limestone --- chemical evolutions --- temperature sensitivity characteristics --- micro-surfacing --- cement emulsified asphalt mixture --- dynamic characteristics --- high-strength concrete --- flame retardant --- durability --- creep --- damping --- damage constitutive model --- Ultra-High Performance Concrete (UHPC) --- granite aggregate --- diatomite-modified asphalt mixture --- healing model --- asphalt combustion --- freeze-thaw cycle --- SBS-modified bitumen --- workability --- graphene --- flow behavior index --- fluidity --- parametrization --- fatigue property --- rankinite --- railway application --- crystallization sensitivity --- aqueous solute compositions --- pozzolanic reaction --- self-healing asphalt --- recycled material --- artificial neural network --- rheological properties --- molecular dynamic simulation --- building envelopes --- aluminum hydroxide --- crumb rubber --- optimization --- viscoelasticity --- building energy conservation --- diffusing --- anti-rutting agent --- molecular bridge --- engineered cementitious composites (ECC) --- pavement performance --- morphology --- colloidal structure --- hydrophilic nanosilica --- construction materials --- road engineering --- laboratory evaluation --- rejuvenator --- fatigue equation --- aggregates --- three-point bending fatigue test --- energy-based approach --- aggregate from sanitary ceramic wastes --- polyacrylic acid --- mastic --- CO2 --- specific surface area --- aggregate image measurement system --- solubilizer --- flexibility --- simplex lattice design --- SBS/CRP-modified bitumen --- water stability --- fatigue life --- rejuvenating systems --- skid-resistance --- reclaimed asphalt pavement --- rheology --- hydration characteristic --- surface energy --- modified asphalt materials --- asphalt pavement --- stripping test --- SOD --- tensile stresses --- ultraviolet radiation --- basalt fiber --- “blue-shift” --- polyvinyl alcohol --- sanitary ceramics --- dynamic moduli --- aggregate characteristics --- compound modify --- expanded graphite --- steel slag --- induced healing --- thermal property --- effective heating depth --- dissipated strain energy --- MDA --- mechanical behavior --- plateau value of permanent deformation ratio --- long-term field service --- crack healing --- desulphurization gypsum residues --- pavement failure --- rejuvenation --- interfacial transition zone --- combination --- polyethylene glycol --- adsorption --- tensile strains --- cold recycled asphalt mixture --- resistance to deformations --- asphalt-aggregate adhesion --- viscoelastic properties --- damage evolution --- carbonation --- microwave heating --- amorphous silica --- high-modulus asphalt mixture (HMAM) --- hot mix asphalt containing recycled concrete aggregate --- microfluidic --- dynamic responses --- concrete --- asphalt mastic --- crumb rubber powder --- response surface methodology --- nanomaterial --- self-compacting concrete (SCC) --- rutting factor --- X-ray computed tomography --- fiber modification --- overlay tester --- rubber modified asphalt --- ageing --- aged bitumen --- aged asphalt --- recycling --- damage characteristics --- dynamic tests --- permeation --- ageing resistance


Book
Environment-Friendly Construction Materials.
Authors: --- --- ---
ISBN: 3039210157 3039210149 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Construction materials are the most widely used materials for civil infrastructure in our daily lives. However, from an environmental point of view, they consume a huge amount of natural resources and generate the majority of greenhouse gasses. Therefore, many new and novel technologies for designing environmentally friendly construction materials have been developed recently. This Special Issue, “Environment-Friendly Construction Materials”, has been proposed and organized as a means to present recent developments in the field of construction materials. It covers a wide range of selected topics on construction materials.

Keywords

fluorescence spectrum --- microstructure --- regeneration --- sensitivity analysis --- asphalt mixes --- limestone aggregates --- bio-oil --- plateau value of dissipated strain energy ratio --- diatomite --- water-leaching pretreatment --- fatigue performance --- ultra-thin wearing course --- recycling aggregate --- design optimization --- induction heating --- vibration noise consumption --- bitumen --- relaxation --- viscous-elastic temperature --- field evaluation --- healing agents --- transmittance --- Ca-alginate microcapsules --- artificially aged asphalt mixture --- sequencing batch Chlorella reactor --- waste concrete --- plant ash lixivium --- steel fiber --- ultra-high performance concrete --- titanate coupling agent --- SEM --- self-healing --- physical properties --- porous pumice --- thermal–mechanical properties --- aggregate morphology --- asphalt mortar --- adhesion energy --- styrene–butadiene–styrene (SBS) modified bitumen --- water solute exposure --- emulsified asphalt --- demulsification speed --- mineral-asphalt mixtures --- aging processes --- phase change materials --- surface texture --- long-term drying shrinkage --- contact angle --- aging depth --- asphalt --- calcium alginate capsules --- nitrogen and phosphorus removal --- micro-morphology --- rice husk ash --- low-temperature --- cement --- hydrophobic nanosilica --- asphalt mixture --- thickness combinations --- layered double hydroxide --- initial self-healing temperature --- environmentally friendly construction materials --- epoxidized soybean oil --- limestone --- chemical evolutions --- temperature sensitivity characteristics --- micro-surfacing --- cement emulsified asphalt mixture --- dynamic characteristics --- high-strength concrete --- flame retardant --- durability --- creep --- damping --- damage constitutive model --- Ultra-High Performance Concrete (UHPC) --- granite aggregate --- diatomite-modified asphalt mixture --- healing model --- asphalt combustion --- freeze-thaw cycle --- SBS-modified bitumen --- workability --- graphene --- flow behavior index --- fluidity --- parametrization --- fatigue property --- rankinite --- railway application --- crystallization sensitivity --- aqueous solute compositions --- pozzolanic reaction --- self-healing asphalt --- recycled material --- artificial neural network --- rheological properties --- molecular dynamic simulation --- building envelopes --- aluminum hydroxide --- crumb rubber --- optimization --- viscoelasticity --- building energy conservation --- diffusing --- anti-rutting agent --- molecular bridge --- engineered cementitious composites (ECC) --- pavement performance --- morphology --- colloidal structure --- hydrophilic nanosilica --- construction materials --- road engineering --- laboratory evaluation --- rejuvenator --- fatigue equation --- aggregates --- three-point bending fatigue test --- energy-based approach --- aggregate from sanitary ceramic wastes --- polyacrylic acid --- mastic --- CO2 --- specific surface area --- aggregate image measurement system --- solubilizer --- flexibility --- simplex lattice design --- SBS/CRP-modified bitumen --- water stability --- fatigue life --- rejuvenating systems --- skid-resistance --- reclaimed asphalt pavement --- rheology --- hydration characteristic --- surface energy --- modified asphalt materials --- asphalt pavement --- stripping test --- SOD --- tensile stresses --- ultraviolet radiation --- basalt fiber --- “blue-shift” --- polyvinyl alcohol --- sanitary ceramics --- dynamic moduli --- aggregate characteristics --- compound modify --- expanded graphite --- steel slag --- induced healing --- thermal property --- effective heating depth --- dissipated strain energy --- MDA --- mechanical behavior --- plateau value of permanent deformation ratio --- long-term field service --- crack healing --- desulphurization gypsum residues --- pavement failure --- rejuvenation --- interfacial transition zone --- combination --- polyethylene glycol --- adsorption --- tensile strains --- cold recycled asphalt mixture --- resistance to deformations --- asphalt-aggregate adhesion --- viscoelastic properties --- damage evolution --- carbonation --- microwave heating --- amorphous silica --- high-modulus asphalt mixture (HMAM) --- hot mix asphalt containing recycled concrete aggregate --- microfluidic --- dynamic responses --- concrete --- asphalt mastic --- crumb rubber powder --- response surface methodology --- nanomaterial --- self-compacting concrete (SCC) --- rutting factor --- X-ray computed tomography --- fiber modification --- overlay tester --- rubber modified asphalt --- ageing --- aged bitumen --- aged asphalt --- recycling --- damage characteristics --- dynamic tests --- permeation --- ageing resistance

Listing 1 - 9 of 9
Sort by