Narrow your search
Listing 1 - 4 of 4
Sort by

Dissertation
Synthèse hydrothermale et stabilité de la paragenèse triphylite-sarcopside-graftonite
Authors: --- --- --- ---
Year: 2021 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

Dans le but de définir le domaine de stabilité et les conditions de formation de la paragenèse triphylite-sarcopside-graftonite, des synthèses hydrothermales ont été effectuées dans les systèmes LiFe2-xMnxCa0,5(PO4)2 (x = 0; 1; 2), Li2Fe1,5+xMn3-xCa0,5(PO4)4 (x = 0; 0,75; 1,5) et Fe1+xMn1+xCa1-2x(PO4)2 (x = 0; 0,25; 0,375), à des températures comprises entre 400°C et 700°C (P = 1 kbar). La diffraction des rayons X sur poudres montre la cristallisation de la paragenèse triphylite-sarcopside-graftonite pour les deux systèmes qui intègrent du lithium, mais pas systématiquement pour chaque température. La diffraction des rayons X sur poudres suggère que le sarcopside cristallise toujours pour des températures de 400°C et 600°C, mais plus rarement à 500°C et 700°C. La microscopie électronique à balayage nuance cette cristallisation et permet de confirmer la présence du sarcopside pour certain échantillon à 500°C et 700°C. Les diagrammes de phases expérimentaux montrent une incorporation de Ca2+ au sein du couple triphylite-sarcopside prétendument liée à des mécanismes de substitutions cationiques. Des corrélations établies sur base des proportions cationiques Fe2+/(Fe2+ + Mn2+) montrent une convergence des contenus en Fe2+ et Mn2+ à hautes températures au sein du couple triphylite-graftonite. L’hypothèse avancée pour expliquer ce phénomène est l’existence d’un précurseur commun à hautes températures pour la graftonite et la triphylite.


Book
Value of Mineralogical Monitoring for the Mining and Minerals Industry In memory of Prof. Dr. Herbert Pöllmann
Authors: ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue, focusing on the value of mineralogical monitoring for the mining and minerals industry, should include detailed investigations and characterizations of minerals and ores of the following fields for ore and process control: Lithium ores—determination of lithium contents by XRD methods; Copper ores and their different mineralogy; Nickel lateritic ores; Iron ores and sinter; Bauxite and bauxite overburden; Heavy mineral sands. The value of quantitative mineralogical analysis, mainly by XRD methods, combined with other techniques for the evaluation of typical metal ores and other important minerals, will be shown and demonstrated for different minerals. The different steps of mineral processing and metal contents bound to different minerals will be included. Additionally, some processing steps, mineral enrichments, and optimization of mineral determinations using XRD will be demonstrated. Statistical methods for the treatment of a large set of XRD patterns of ores and mineral concentrates, as well as their value for the characterization of mineral concentrates and ores, will be demonstrated. Determinations of metal concentrations in minerals by different methods will be included, as well as the direct prediction of process parameters from raw XRD data.

Keywords

Technology: general issues --- History of engineering & technology --- Mining technology & engineering --- barite --- mineralogy --- industrial application --- beneficiation --- specific gravity --- bauxite overburden --- Belterra Clay --- mineralogical quantification --- Rietveld analysis --- machine learning --- artificial intelligence --- mining --- mineralogical analysis --- bauxite --- available alumina --- reactive silica --- XRD --- PLSR --- lithium --- quantification --- clustering --- Rietveld --- cluster analysis --- spodumene --- petalite --- lepidolite --- triphylite --- zinnwaldite --- amblygonite --- chalcopyrite --- ore blending --- copper flotation --- nickel laterite --- ore sorting --- framboidal pyrite --- sulfide minerals --- flotation --- process mineralogy --- heavy minerals --- ilmenite --- titania slag --- rietveld --- Magneli phases --- barite --- mineralogy --- industrial application --- beneficiation --- specific gravity --- bauxite overburden --- Belterra Clay --- mineralogical quantification --- Rietveld analysis --- machine learning --- artificial intelligence --- mining --- mineralogical analysis --- bauxite --- available alumina --- reactive silica --- XRD --- PLSR --- lithium --- quantification --- clustering --- Rietveld --- cluster analysis --- spodumene --- petalite --- lepidolite --- triphylite --- zinnwaldite --- amblygonite --- chalcopyrite --- ore blending --- copper flotation --- nickel laterite --- ore sorting --- framboidal pyrite --- sulfide minerals --- flotation --- process mineralogy --- heavy minerals --- ilmenite --- titania slag --- rietveld --- Magneli phases


Book
Value of Mineralogical Monitoring for the Mining and Minerals Industry In memory of Prof. Dr. Herbert Pöllmann
Authors: ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue, focusing on the value of mineralogical monitoring for the mining and minerals industry, should include detailed investigations and characterizations of minerals and ores of the following fields for ore and process control: Lithium ores—determination of lithium contents by XRD methods; Copper ores and their different mineralogy; Nickel lateritic ores; Iron ores and sinter; Bauxite and bauxite overburden; Heavy mineral sands. The value of quantitative mineralogical analysis, mainly by XRD methods, combined with other techniques for the evaluation of typical metal ores and other important minerals, will be shown and demonstrated for different minerals. The different steps of mineral processing and metal contents bound to different minerals will be included. Additionally, some processing steps, mineral enrichments, and optimization of mineral determinations using XRD will be demonstrated. Statistical methods for the treatment of a large set of XRD patterns of ores and mineral concentrates, as well as their value for the characterization of mineral concentrates and ores, will be demonstrated. Determinations of metal concentrations in minerals by different methods will be included, as well as the direct prediction of process parameters from raw XRD data.


Book
Value of Mineralogical Monitoring for the Mining and Minerals Industry In memory of Prof. Dr. Herbert Pöllmann
Authors: ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue, focusing on the value of mineralogical monitoring for the mining and minerals industry, should include detailed investigations and characterizations of minerals and ores of the following fields for ore and process control: Lithium ores—determination of lithium contents by XRD methods; Copper ores and their different mineralogy; Nickel lateritic ores; Iron ores and sinter; Bauxite and bauxite overburden; Heavy mineral sands. The value of quantitative mineralogical analysis, mainly by XRD methods, combined with other techniques for the evaluation of typical metal ores and other important minerals, will be shown and demonstrated for different minerals. The different steps of mineral processing and metal contents bound to different minerals will be included. Additionally, some processing steps, mineral enrichments, and optimization of mineral determinations using XRD will be demonstrated. Statistical methods for the treatment of a large set of XRD patterns of ores and mineral concentrates, as well as their value for the characterization of mineral concentrates and ores, will be demonstrated. Determinations of metal concentrations in minerals by different methods will be included, as well as the direct prediction of process parameters from raw XRD data.

Listing 1 - 4 of 4
Sort by