Listing 1 - 4 of 4 |
Sort by
|
Choose an application
Everybody has made use of grease in their daily lives. The word “grease” originates from the early Latin word “crassus,” meaning fat. For our purposes, in this Special Issue, we will be focusing on lubricating grease, for publication in the eponymous journal Lubricants. According to ASTM, lubricating grease may be defined as “a solid-to-semi-fluid product of dispersed thickening agents in a liquid lubricant”. Other functional ingredients, such anti-wear and extreme pressure additives, may be included, with the overall goal of inducing special properties/functionalities. Grease is a very complex lubricant. We have never had a Special Issue focusing on this key product, and lubricating greases are often underrepresented in the technical literature. In recent years, there has been significant progress in research on greases, ranging from the specific chemical formulation of greases for special applications to how grease interacts with various surfaces, tribological advances in grease properties, new techniques for grease property measurements, etc. Recently, greases have also been evolving, as they and play a key role in the lubrication of electric vehicles. We aim to select the top research avenues and papers worldwide related to lubricating greases to form this compilation. This Special Issue wishes to be the first of its kind, and we plan to make this an annual exercise, where our compendium aims to discuss the latest developments worldwide encompassing all areas related to greases.
grease degradation --- contact angle --- yield stress --- shearing --- tribology properties --- grease consistency --- grease testing --- cone penetration --- rheometer testing --- grease --- tackiness --- adhesion --- four-ball tester --- heat dissipation --- speed ramp up --- ASTM D2596 --- grease weld load --- grease friction --- greases --- EVs --- hybrid vehicle --- driveline lubricant --- electrification --- thermal properties --- electromagnetic field --- noise, vibration and harshness (NVH) --- energy efficiency --- elastohydrodynamic lubrication --- isothermal --- non-Newtonian --- point contact --- grease lubrication --- Bauer’s model --- pressure gradient --- equivalent viscosity --- hybrid bearings --- electric vehicles --- electric motors --- friction and wear --- bio-based grease --- film thickness --- friction measurements --- polyurea thickener --- PAO --- CNTs --- wear --- coefficient of friction --- tribological behavior --- fretting --- sliding --- lubricating grease --- heterogeneous crystallization --- glass transition --- rheology --- differential scanning calorimetry (DSC) --- n/a --- Bauer's model
Choose an application
Everybody has made use of grease in their daily lives. The word “grease” originates from the early Latin word “crassus,” meaning fat. For our purposes, in this Special Issue, we will be focusing on lubricating grease, for publication in the eponymous journal Lubricants. According to ASTM, lubricating grease may be defined as “a solid-to-semi-fluid product of dispersed thickening agents in a liquid lubricant”. Other functional ingredients, such anti-wear and extreme pressure additives, may be included, with the overall goal of inducing special properties/functionalities. Grease is a very complex lubricant. We have never had a Special Issue focusing on this key product, and lubricating greases are often underrepresented in the technical literature. In recent years, there has been significant progress in research on greases, ranging from the specific chemical formulation of greases for special applications to how grease interacts with various surfaces, tribological advances in grease properties, new techniques for grease property measurements, etc. Recently, greases have also been evolving, as they and play a key role in the lubrication of electric vehicles. We aim to select the top research avenues and papers worldwide related to lubricating greases to form this compilation. This Special Issue wishes to be the first of its kind, and we plan to make this an annual exercise, where our compendium aims to discuss the latest developments worldwide encompassing all areas related to greases.
Technology: general issues --- History of engineering & technology --- grease degradation --- contact angle --- yield stress --- shearing --- tribology properties --- grease consistency --- grease testing --- cone penetration --- rheometer testing --- grease --- tackiness --- adhesion --- four-ball tester --- heat dissipation --- speed ramp up --- ASTM D2596 --- grease weld load --- grease friction --- greases --- EVs --- hybrid vehicle --- driveline lubricant --- electrification --- thermal properties --- electromagnetic field --- noise, vibration and harshness (NVH) --- energy efficiency --- elastohydrodynamic lubrication --- isothermal --- non-Newtonian --- point contact --- grease lubrication --- Bauer's model --- pressure gradient --- equivalent viscosity --- hybrid bearings --- electric vehicles --- electric motors --- friction and wear --- bio-based grease --- film thickness --- friction measurements --- polyurea thickener --- PAO --- CNTs --- wear --- coefficient of friction --- tribological behavior --- fretting --- sliding --- lubricating grease --- heterogeneous crystallization --- glass transition --- rheology --- differential scanning calorimetry (DSC)
Choose an application
This Special Issue book covers a wide scope in the research field of 3D-printing, including: the use of 3D printing in system design; AM with binding jetting; powder manufacturing technologies in 3D printing; fatigue performance of additively manufactured metals, such as the Ti-6Al-4V alloy; 3D-printing methods with metallic powder and a laser-based 3D printer; 3D-printed custom-made implants; laser-directed energy deposition (LDED) process of TiC-TMC coatings; Wire Arc Additive Manufacturing; cranial implant fabrication without supports in electron beam melting (EBM) additive manufacturing; the influence of material properties and characteristics in laser powder bed fusion; Design For Additive Manufacturing (DFAM); porosity evaluation of additively manufactured parts; fabrication of coatings by laser additive manufacturing; laser powder bed fusion additive manufacturing; plasma metal deposition (PMD); as-metal-arc (GMA) additive manufacturing process; and spreading process maps for powder-bed additive manufacturing derived from physics model-based machine learning.
powder-bed additive manufacturing (AM) --- powder spreading --- spreading process map --- discrete element method (DEM) --- machine learning --- GMA additive manufacturing --- weld reinforcement --- visual features --- neural network --- selective laser melting --- magnesium alloys --- properties --- plasma metal deposition --- additive manufacturing --- 316L --- processing conditions --- mechanical properties --- microstructure --- virgin --- recycled --- metal powders --- laser powder bed fusion --- laser additive manufacturing --- 316l ss --- nickel alloy --- tribological behavior --- porosity --- rough surface --- ultrasonic testing --- convolutional neural network --- deep neural network --- multi-layer perceptron --- key performance indicators --- topology optimization --- design for additive manufacturing --- design for additive manufacturing services --- selective laser melting (SLM) --- laser powder bed fusion (LPBF) --- powder --- particle size distribution --- particle morphology --- powder layer density --- part density --- flowability --- Hausner ratio --- electron beam melting --- customized implant --- cost analysis --- fitting accuracy --- cranial reconstruction --- thin wall manufacturing --- process modelling --- ultrasonic vibration --- laser directed energy deposition --- coating --- TiC-TMC --- extremity --- revision --- limb salvage surgery --- 3D printing --- customized --- implant --- powder metallurgy --- simulated body fluid --- biomaterial --- fatigue --- titanium --- direct laser deposition --- Inconel 625 --- parametrisation --- microhardness --- preheating --- binder jetting --- sand casting --- aluminum alloy --- corrosion --- pressure drop --- heat exchanger --- surface textures --- dimples --- drag reduction --- n/a
Choose an application
This Special Issue book covers a wide scope in the research field of 3D-printing, including: the use of 3D printing in system design; AM with binding jetting; powder manufacturing technologies in 3D printing; fatigue performance of additively manufactured metals, such as the Ti-6Al-4V alloy; 3D-printing methods with metallic powder and a laser-based 3D printer; 3D-printed custom-made implants; laser-directed energy deposition (LDED) process of TiC-TMC coatings; Wire Arc Additive Manufacturing; cranial implant fabrication without supports in electron beam melting (EBM) additive manufacturing; the influence of material properties and characteristics in laser powder bed fusion; Design For Additive Manufacturing (DFAM); porosity evaluation of additively manufactured parts; fabrication of coatings by laser additive manufacturing; laser powder bed fusion additive manufacturing; plasma metal deposition (PMD); as-metal-arc (GMA) additive manufacturing process; and spreading process maps for powder-bed additive manufacturing derived from physics model-based machine learning.
Technology: general issues --- History of engineering & technology --- powder-bed additive manufacturing (AM) --- powder spreading --- spreading process map --- discrete element method (DEM) --- machine learning --- GMA additive manufacturing --- weld reinforcement --- visual features --- neural network --- selective laser melting --- magnesium alloys --- properties --- plasma metal deposition --- additive manufacturing --- 316L --- processing conditions --- mechanical properties --- microstructure --- virgin --- recycled --- metal powders --- laser powder bed fusion --- laser additive manufacturing --- 316l ss --- nickel alloy --- tribological behavior --- porosity --- rough surface --- ultrasonic testing --- convolutional neural network --- deep neural network --- multi-layer perceptron --- key performance indicators --- topology optimization --- design for additive manufacturing --- design for additive manufacturing services --- selective laser melting (SLM) --- laser powder bed fusion (LPBF) --- powder --- particle size distribution --- particle morphology --- powder layer density --- part density --- flowability --- Hausner ratio --- electron beam melting --- customized implant --- cost analysis --- fitting accuracy --- cranial reconstruction --- thin wall manufacturing --- process modelling --- ultrasonic vibration --- laser directed energy deposition --- coating --- TiC-TMC --- extremity --- revision --- limb salvage surgery --- 3D printing --- customized --- implant --- powder metallurgy --- simulated body fluid --- biomaterial --- fatigue --- titanium --- direct laser deposition --- Inconel 625 --- parametrisation --- microhardness --- preheating --- binder jetting --- sand casting --- aluminum alloy --- corrosion --- pressure drop --- heat exchanger --- surface textures --- dimples --- drag reduction
Listing 1 - 4 of 4 |
Sort by
|