Narrow your search

Library

FARO (8)

KU Leuven (8)

LUCA School of Arts (8)

Odisee (8)

Thomas More Kempen (8)

Thomas More Mechelen (8)

UCLL (8)

ULiège (8)

VIVES (8)

Vlaams Parlement (8)

More...

Resource type

book (19)

periodical (1)


Language

English (20)


Year
From To Submit

2022 (3)

2021 (8)

2020 (6)

2019 (1)

2017 (1)

Listing 1 - 10 of 20 << page
of 2
>>
Sort by

Periodical
npj 2D Materials and Applications

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Two-Dimensional Electronics and Optoelectronics
Authors: ---
ISBN: 3038424935 3038424927 Year: 2017 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The discovery of monolayer graphene led to a Nobel Prize in Physics being awarded in 2010. This has stimulated further research on a wide variety of two-dimensional (2D) layered materials. The coupling of metallic graphene, semiconducting 2D transition metal dichalcogenides (TMDCs) and black phosphorus have attracted a tremendous amount of interest in new electronic and optoelectronic applications. Together with other 2D materials, such as the wide band gap boron nitride nanosheets (BNNSs), all these 2D materials have led towards an emerging field of van der Waal 2D heterostructures. The papers in this book were originally published by Electronics (MDPI) in a Special Issue on “Two-Dimensional Electronics and Optoelectronics”. The book consists of eight papers, including two review articles, covering various pertinent and fascinating issues concerning 2D materials and devices. Further, the potential and the challenges of 2D materials are discussed, which provide up to date guidance for future research and development.


Book
Superconducting and Graphene-based Devices
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue reprint aims to collect new or improved ideas to exploit superconducting materials, as well as graphene, towards achieving innovative devices, either at a small scale, as well as at a large scale. Several potential applications of graphene are enhanced by the possibility to modify its surface to introduce a non-zero bandgap, to tune adhesion and/or hydrophobicity/hydrophilicity, etc. These surface properties are crucial to the realization of graphene-based devices. Papers demonstrating graphene and/or superconducting devices, device processing, characterization, and applications, are particularly welcomed. Topics in this Special Issue include, but are not limited to: Graphene devices Graphene based heterostructures Superconducting interfaces Superconducting devices Electronic, optical, photonic and magnetic properties Surface and interfacial characterization techniques Device integration and fabrication

Keywords

Technology: general issues --- GFET --- RF --- access region --- superconducting devices --- photodetectors --- nanostructured materials --- nanostructured and microstructured superconductors --- high temperature superconductors --- bolometers --- quantum electronics --- noise spectroscopy --- granular aluminum oxide --- superconducting nanowires --- current-resistance effects --- iron-based superconductors --- nanowires --- single-photon detectors --- superconductivity --- transport properties --- energy gap --- superconducting order parameter --- proximity effect --- nano-junction --- Andreev reflection --- chemical --- vapor deposition --- graphene oxide --- transition-metal dichalcogenides --- WS2 --- perfect graphene (p-Gr) --- defective graphene (d-Gr) --- Gr/Si slab --- diffusion barrier --- CI-NEB calculation --- GFET --- RF --- access region --- superconducting devices --- photodetectors --- nanostructured materials --- nanostructured and microstructured superconductors --- high temperature superconductors --- bolometers --- quantum electronics --- noise spectroscopy --- granular aluminum oxide --- superconducting nanowires --- current-resistance effects --- iron-based superconductors --- nanowires --- single-photon detectors --- superconductivity --- transport properties --- energy gap --- superconducting order parameter --- proximity effect --- nano-junction --- Andreev reflection --- chemical --- vapor deposition --- graphene oxide --- transition-metal dichalcogenides --- WS2 --- perfect graphene (p-Gr) --- defective graphene (d-Gr) --- Gr/Si slab --- diffusion barrier --- CI-NEB calculation


Book
Superconducting and Graphene-based Devices
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue reprint aims to collect new or improved ideas to exploit superconducting materials, as well as graphene, towards achieving innovative devices, either at a small scale, as well as at a large scale. Several potential applications of graphene are enhanced by the possibility to modify its surface to introduce a non-zero bandgap, to tune adhesion and/or hydrophobicity/hydrophilicity, etc. These surface properties are crucial to the realization of graphene-based devices. Papers demonstrating graphene and/or superconducting devices, device processing, characterization, and applications, are particularly welcomed. Topics in this Special Issue include, but are not limited to: Graphene devices Graphene based heterostructures Superconducting interfaces Superconducting devices Electronic, optical, photonic and magnetic properties Surface and interfacial characterization techniques Device integration and fabrication


Book
Superconducting and Graphene-based Devices
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue reprint aims to collect new or improved ideas to exploit superconducting materials, as well as graphene, towards achieving innovative devices, either at a small scale, as well as at a large scale. Several potential applications of graphene are enhanced by the possibility to modify its surface to introduce a non-zero bandgap, to tune adhesion and/or hydrophobicity/hydrophilicity, etc. These surface properties are crucial to the realization of graphene-based devices. Papers demonstrating graphene and/or superconducting devices, device processing, characterization, and applications, are particularly welcomed. Topics in this Special Issue include, but are not limited to: Graphene devices Graphene based heterostructures Superconducting interfaces Superconducting devices Electronic, optical, photonic and magnetic properties Surface and interfacial characterization techniques Device integration and fabrication


Book
2D Materials and Van der Waals Heterostructures : Physics and Applications
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The advent of graphene and, more recently, two-dimensional materials has opened new perspectives in electronics, optoelectronics, energy harvesting, and sensing applications. This book, based on a Special Issue published in Nanomaterials – MDPI covers experimental, simulation, and theoretical research on 2D materials and their van der Waals heterojunctions. The emphasis is the physical properties and the applications of 2D materials in state-of-the-art sensors and electronic or optoelectronic devices.

Keywords

Technology: general issues --- ZnO/WS2 --- ZnO/WSe2 --- photocatalysis --- hybrid density functional --- copper vanadate --- photoanode --- water splitting --- graphene oxide --- Stone–Wales defected graphene --- half-metallocene --- adsorption energy --- density of states --- and magnetic property --- palladium selenide monolayer --- physical properties --- light-harvesting performance --- type-II heterostructure --- first principles calculations --- 2D materials --- field effect transistors --- PMMA --- tungsten diselenide --- graphene/MoS2 heterostructure --- optical properties --- electronic structure --- Layer-dependent --- Indium Selenide --- density functional theory --- work function --- MXene --- Ti3C2Tx --- transition metal dichalcogenides --- surface plasmon resonance --- sensitivity --- CdS/g-C3N4 --- strain-tunable --- WS2 --- large-area --- CVD --- fluorescence emission --- Raman mapping --- mechanical behaviors --- electronic properties --- photocatalytic properties --- graphene --- Schottky barrier --- diode --- photodetector --- heterojunction --- MOS (Metal Oxide Semiconductor) capacitor --- responsivity --- transition metal dichalcogenide --- van der Waals heterostructure --- photodetection --- photovoltaics --- ZnO/WS2 --- ZnO/WSe2 --- photocatalysis --- hybrid density functional --- copper vanadate --- photoanode --- water splitting --- graphene oxide --- Stone–Wales defected graphene --- half-metallocene --- adsorption energy --- density of states --- and magnetic property --- palladium selenide monolayer --- physical properties --- light-harvesting performance --- type-II heterostructure --- first principles calculations --- 2D materials --- field effect transistors --- PMMA --- tungsten diselenide --- graphene/MoS2 heterostructure --- optical properties --- electronic structure --- Layer-dependent --- Indium Selenide --- density functional theory --- work function --- MXene --- Ti3C2Tx --- transition metal dichalcogenides --- surface plasmon resonance --- sensitivity --- CdS/g-C3N4 --- strain-tunable --- WS2 --- large-area --- CVD --- fluorescence emission --- Raman mapping --- mechanical behaviors --- electronic properties --- photocatalytic properties --- graphene --- Schottky barrier --- diode --- photodetector --- heterojunction --- MOS (Metal Oxide Semiconductor) capacitor --- responsivity --- transition metal dichalcogenide --- van der Waals heterostructure --- photodetection --- photovoltaics


Book
Preparation and Properties of 2D Materials
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Since the great success of graphene, atomically thin-layered nanomaterials, called two dimensional (2D) materials, have attracted tremendous attention due to their extraordinary physical properties. Specifically, van der Waals heterostructured architectures based on a few 2D materials, named atomic-scale Lego, have been proposed as unprecedented platforms for the implementation of versatile devices with a completely novel function or extremely high-performance, shifting the research paradigm in materials science and engineering. Thus, diverse 2D materials beyond existing bulk materials have been widely studied for promising electronic, optoelectronic, mechanical, and thermoelectric applications. Especially, this Special Issue included the recent advances in the unique preparation methods such as exfoliation-based synthesis and vacuum-based deposition of diverse 2D materials and also their device applications based on interesting physical properties. Specifically, this Editorial consists of the following two parts: Preparation methods of 2D materials and Properties of 2D materials

Keywords

History of engineering & technology --- α-MoO3 --- carbon nitride --- g-C3N4 --- molybdenum trioxide --- nanoplates --- synthesis --- few-layer MoS2 --- magnetron sputtering --- magnetron sputtering power --- raman spectroscopy --- disorder --- V2Se9 --- atomic crystal --- mechanical exfoliation --- scanning Kelvin probe microscopy --- MoS2 --- black phosphorus --- 2D/2D heterojunction --- junction FET --- tunneling diode --- tunneling FET --- band-to-band tunneling (BTBT) --- natural molybdenite --- MoS2 nanosheet --- SiO2 --- liquid exfoliation --- photoelectric properties --- uniaxial strain --- flexible substrate --- film-substrate interaction --- photoluminescence --- Raman spectroscopy --- molybdenum disulfide --- bilayer-stacked structure --- WS2 --- lubricant additives --- tribological properties --- interfacial layer --- contact resistance --- bias stress stability --- saturable absorbers --- Langmuir-Blodgett technique --- Q-switched laser --- chemical vapor deposition --- P2O5 --- p-type conduction --- P-doped MoS2 --- transition metal dichalcogenides --- two-dimensional materials --- ferroelectrics --- 2D heterostructure --- WSe2 --- NbSe2 --- Nb2O5 interlayer --- synapse device --- neuromorphic system --- α-MoO3 --- carbon nitride --- g-C3N4 --- molybdenum trioxide --- nanoplates --- synthesis --- few-layer MoS2 --- magnetron sputtering --- magnetron sputtering power --- raman spectroscopy --- disorder --- V2Se9 --- atomic crystal --- mechanical exfoliation --- scanning Kelvin probe microscopy --- MoS2 --- black phosphorus --- 2D/2D heterojunction --- junction FET --- tunneling diode --- tunneling FET --- band-to-band tunneling (BTBT) --- natural molybdenite --- MoS2 nanosheet --- SiO2 --- liquid exfoliation --- photoelectric properties --- uniaxial strain --- flexible substrate --- film-substrate interaction --- photoluminescence --- Raman spectroscopy --- molybdenum disulfide --- bilayer-stacked structure --- WS2 --- lubricant additives --- tribological properties --- interfacial layer --- contact resistance --- bias stress stability --- saturable absorbers --- Langmuir-Blodgett technique --- Q-switched laser --- chemical vapor deposition --- P2O5 --- p-type conduction --- P-doped MoS2 --- transition metal dichalcogenides --- two-dimensional materials --- ferroelectrics --- 2D heterostructure --- WSe2 --- NbSe2 --- Nb2O5 interlayer --- synapse device --- neuromorphic system


Book
Graphene and Other 2D Layered Nanomaterial-Based Films: Synthesis, Properties and Applications
Authors: ---
ISBN: 3039219030 3039219022 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is dedicated to highlighting some relevant advances in the field of thin films and coatings based on two-dimensional crystals and layered nanomaterials. Due to their layered structure, graphene and a variety of new 2D inorganic nanosystems, called “graphene analogues”, have all attracted tremendous interest due to their unprecedented properties/superior performance, and may find applications in many fields from electronics to biotechnology. These two-dimensional systems are ultrathin and, hence, tend to be flexible, also presenting distinctive and nearly intrinsic characteristics, including electronic, magnetic, optical, thermal conductivity, and superconducting properties. Furthermore, the combination of different structures and synergetic effects may open new and unprecedented perspectives, making these ideal advanced materials for multifunctional assembled systems. As far as the field of coatings is concerned, new layered nanostructures may offer unique and multifunctional properties, including gas barrier, lubricant, conductive, magnetic, photoactive, self-cleaning, and/or antimicrobial surfaces. This book contains new findings on the synthesis and perspectives of multifunctional films that are at the forefront of the science and coating technologies.


Book
2D Materials and Van der Waals Heterostructures : Physics and Applications
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The advent of graphene and, more recently, two-dimensional materials has opened new perspectives in electronics, optoelectronics, energy harvesting, and sensing applications. This book, based on a Special Issue published in Nanomaterials – MDPI covers experimental, simulation, and theoretical research on 2D materials and their van der Waals heterojunctions. The emphasis is the physical properties and the applications of 2D materials in state-of-the-art sensors and electronic or optoelectronic devices.


Book
Preparation and Properties of 2D Materials
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Since the great success of graphene, atomically thin-layered nanomaterials, called two dimensional (2D) materials, have attracted tremendous attention due to their extraordinary physical properties. Specifically, van der Waals heterostructured architectures based on a few 2D materials, named atomic-scale Lego, have been proposed as unprecedented platforms for the implementation of versatile devices with a completely novel function or extremely high-performance, shifting the research paradigm in materials science and engineering. Thus, diverse 2D materials beyond existing bulk materials have been widely studied for promising electronic, optoelectronic, mechanical, and thermoelectric applications. Especially, this Special Issue included the recent advances in the unique preparation methods such as exfoliation-based synthesis and vacuum-based deposition of diverse 2D materials and also their device applications based on interesting physical properties. Specifically, this Editorial consists of the following two parts: Preparation methods of 2D materials and Properties of 2D materials

Listing 1 - 10 of 20 << page
of 2
>>
Sort by