Narrow your search

Library

FARO (4)

KU Leuven (4)

LUCA School of Arts (4)

Odisee (4)

Thomas More Kempen (4)

Thomas More Mechelen (4)

UCLL (4)

ULB (4)

ULiège (4)

VIVES (4)

More...

Resource type

book (10)


Language

English (10)


Year
From To Submit

2022 (7)

2020 (3)

Listing 1 - 10 of 10
Sort by

Book
Energy-Efficiency of Conveyor Belts in Raw Materials Industry
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book focuses on research related to the energy efficiency of conveyor transportation. The solutions presented in the Special Issue have an impact on optimizing, and thus reducing, the costs of energy consumption by belt conveyors. This is due, inter alia, to the use of better materials for conveyor belts, which reduce its rolling resistance and noise, and improve its ability to adsorb the impact energy from the material falling on the belt. The use of mobile robots designed to detect defects in the conveyor's components makes the conveyor operation safer, and means that the conveyor works for longer and there are no unplanned stops due to damage.


Book
Energy-Efficiency of Conveyor Belts in Raw Materials Industry
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book focuses on research related to the energy efficiency of conveyor transportation. The solutions presented in the Special Issue have an impact on optimizing, and thus reducing, the costs of energy consumption by belt conveyors. This is due, inter alia, to the use of better materials for conveyor belts, which reduce its rolling resistance and noise, and improve its ability to adsorb the impact energy from the material falling on the belt. The use of mobile robots designed to detect defects in the conveyor's components makes the conveyor operation safer, and means that the conveyor works for longer and there are no unplanned stops due to damage.


Book
Energy-Efficiency of Conveyor Belts in Raw Materials Industry
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book focuses on research related to the energy efficiency of conveyor transportation. The solutions presented in the Special Issue have an impact on optimizing, and thus reducing, the costs of energy consumption by belt conveyors. This is due, inter alia, to the use of better materials for conveyor belts, which reduce its rolling resistance and noise, and improve its ability to adsorb the impact energy from the material falling on the belt. The use of mobile robots designed to detect defects in the conveyor's components makes the conveyor operation safer, and means that the conveyor works for longer and there are no unplanned stops due to damage.


Book
Research on Hydraulics and River Dynamics
Author:
ISBN: 3036555986 3036555978 Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue includes nine original contributions focused on river hydraulics. Four of these resulted from cooperation between universities from different countries: (a) Russia and Poland , (b) Taiwan and the USA , (c) Iran and Italy, and (d) India and Italy . The other contributions resulted from research carried out in universities from South Korea [5], Greece [6], China , and Japan .


Book
New Advances in Fluid Structure Interaction
Authors: --- --- --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Fluid–structure interactions (FSIs) play a crucial role in the design, construction, service and maintenance of many engineering applications, e.g., aircraft, towers, pipes, offshore platforms and long-span bridges. The old Tacoma Narrows Bridge (1940) is probably one of the most infamous examples of serious accidents due to the action of FSIs. Aircraft wings and wind-turbine blades can be broken because of FSI-induced oscillations. To alleviate or eliminate these unfavorable effects, FSIs must be dealt with in ocean, coastal, offshore and marine engineering to design safe and sustainable engineering structures. In addition, the wind effects on plants and the resultant wind-induced motions are examples of FSIs in nature. To meet the objectives of progress and innovation in FSIs in various scenarios of engineering applications and control schemes, this book includes 15 research studies and collects the most recent and cutting-edge developments on these relevant issues. The topics cover different areas associated with FSIs, including wind loads, flow control, energy harvesting, buffeting and flutter, complex flow characteristics, train–bridge interactions and the application of neural networks in related fields. In summary, these complementary contributions in this publication provide a volume of recent knowledge in the growing field of FSIs.

Keywords

Technology: general issues --- History of engineering & technology --- aerodynamic forces --- pressure distribution --- turbulence intensity --- twin-box girder --- trailing-edge reattachment --- trailing edge --- trailing-edge-changeable streamlined section mode --- limit cycle flutter --- hard flutter --- flutter stability --- wind engineering --- wind tunnel test --- wind-train-bridge system --- flow visualization --- flapping fringe --- CFD simulation --- vortex attenuation --- aerodynamics enhancement --- unsteady aerodynamic force --- single box girder --- Strouhal number --- linear stability analysis --- high-speed train --- enclosed housing for sound emission alleviation --- pressure wave --- unsteady aerodynamic pressure --- load patterns --- wake control --- drag reduction --- MSBC --- square cylinder --- numerical simulation --- wind characteristics --- wind tunnel testing --- complex terrain --- model truncation --- transition section --- deep learning --- prediction --- aerostatic performance --- shape --- convolutional neural networks --- long-span bridge --- buffeting response --- sectional model --- aerodynamic admittance --- integrated transfer function --- flow control --- traveling wave wall --- circular cylinder --- CFD --- wind turbines --- aerodynamic characteristics --- vortex shedding --- time domain method --- frequency domain method --- background and resonance coupled components --- wind induced dynamic responses --- equivalent static wind load --- aerodynamic shape optimization --- surrogate model --- wind energy harvester --- galloping --- passive jet control --- tower wake characteristics --- cobra probe --- n/a


Book
New Advances in Fluid Structure Interaction
Authors: --- --- --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Fluid–structure interactions (FSIs) play a crucial role in the design, construction, service and maintenance of many engineering applications, e.g., aircraft, towers, pipes, offshore platforms and long-span bridges. The old Tacoma Narrows Bridge (1940) is probably one of the most infamous examples of serious accidents due to the action of FSIs. Aircraft wings and wind-turbine blades can be broken because of FSI-induced oscillations. To alleviate or eliminate these unfavorable effects, FSIs must be dealt with in ocean, coastal, offshore and marine engineering to design safe and sustainable engineering structures. In addition, the wind effects on plants and the resultant wind-induced motions are examples of FSIs in nature. To meet the objectives of progress and innovation in FSIs in various scenarios of engineering applications and control schemes, this book includes 15 research studies and collects the most recent and cutting-edge developments on these relevant issues. The topics cover different areas associated with FSIs, including wind loads, flow control, energy harvesting, buffeting and flutter, complex flow characteristics, train–bridge interactions and the application of neural networks in related fields. In summary, these complementary contributions in this publication provide a volume of recent knowledge in the growing field of FSIs.

Keywords

Technology: general issues --- History of engineering & technology --- aerodynamic forces --- pressure distribution --- turbulence intensity --- twin-box girder --- trailing-edge reattachment --- trailing edge --- trailing-edge-changeable streamlined section mode --- limit cycle flutter --- hard flutter --- flutter stability --- wind engineering --- wind tunnel test --- wind-train-bridge system --- flow visualization --- flapping fringe --- CFD simulation --- vortex attenuation --- aerodynamics enhancement --- unsteady aerodynamic force --- single box girder --- Strouhal number --- linear stability analysis --- high-speed train --- enclosed housing for sound emission alleviation --- pressure wave --- unsteady aerodynamic pressure --- load patterns --- wake control --- drag reduction --- MSBC --- square cylinder --- numerical simulation --- wind characteristics --- wind tunnel testing --- complex terrain --- model truncation --- transition section --- deep learning --- prediction --- aerostatic performance --- shape --- convolutional neural networks --- long-span bridge --- buffeting response --- sectional model --- aerodynamic admittance --- integrated transfer function --- flow control --- traveling wave wall --- circular cylinder --- CFD --- wind turbines --- aerodynamic characteristics --- vortex shedding --- time domain method --- frequency domain method --- background and resonance coupled components --- wind induced dynamic responses --- equivalent static wind load --- aerodynamic shape optimization --- surrogate model --- wind energy harvester --- galloping --- passive jet control --- tower wake characteristics --- cobra probe --- n/a


Book
New Advances in Fluid Structure Interaction
Authors: --- --- --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Fluid–structure interactions (FSIs) play a crucial role in the design, construction, service and maintenance of many engineering applications, e.g., aircraft, towers, pipes, offshore platforms and long-span bridges. The old Tacoma Narrows Bridge (1940) is probably one of the most infamous examples of serious accidents due to the action of FSIs. Aircraft wings and wind-turbine blades can be broken because of FSI-induced oscillations. To alleviate or eliminate these unfavorable effects, FSIs must be dealt with in ocean, coastal, offshore and marine engineering to design safe and sustainable engineering structures. In addition, the wind effects on plants and the resultant wind-induced motions are examples of FSIs in nature. To meet the objectives of progress and innovation in FSIs in various scenarios of engineering applications and control schemes, this book includes 15 research studies and collects the most recent and cutting-edge developments on these relevant issues. The topics cover different areas associated with FSIs, including wind loads, flow control, energy harvesting, buffeting and flutter, complex flow characteristics, train–bridge interactions and the application of neural networks in related fields. In summary, these complementary contributions in this publication provide a volume of recent knowledge in the growing field of FSIs.

Keywords

aerodynamic forces --- pressure distribution --- turbulence intensity --- twin-box girder --- trailing-edge reattachment --- trailing edge --- trailing-edge-changeable streamlined section mode --- limit cycle flutter --- hard flutter --- flutter stability --- wind engineering --- wind tunnel test --- wind-train-bridge system --- flow visualization --- flapping fringe --- CFD simulation --- vortex attenuation --- aerodynamics enhancement --- unsteady aerodynamic force --- single box girder --- Strouhal number --- linear stability analysis --- high-speed train --- enclosed housing for sound emission alleviation --- pressure wave --- unsteady aerodynamic pressure --- load patterns --- wake control --- drag reduction --- MSBC --- square cylinder --- numerical simulation --- wind characteristics --- wind tunnel testing --- complex terrain --- model truncation --- transition section --- deep learning --- prediction --- aerostatic performance --- shape --- convolutional neural networks --- long-span bridge --- buffeting response --- sectional model --- aerodynamic admittance --- integrated transfer function --- flow control --- traveling wave wall --- circular cylinder --- CFD --- wind turbines --- aerodynamic characteristics --- vortex shedding --- time domain method --- frequency domain method --- background and resonance coupled components --- wind induced dynamic responses --- equivalent static wind load --- aerodynamic shape optimization --- surrogate model --- wind energy harvester --- galloping --- passive jet control --- tower wake characteristics --- cobra probe --- n/a


Book
Buildings and Structures under Extreme Loads
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Exceptional loads on buildings and structures may have different causes, including high-strain dynamic effects due to natural hazards, man-made attacks, and accidents, as well as extreme operational conditions (severe temperature variations, humidity, etc.). All of these aspects can be critical for specific structural typologies and/or materials that are particularly sensitive to external conditions. In this regard, dedicated and refined methods are required for their design, analysis, and maintenance under the expected lifetime. There are major challenges related to the structural typology and material properties with respect to the key features of the imposed design load. Further issues can be derived from the need for risk mitigation or retrofit of existing structures as well as from the optimal and safe design of innovative materials/systems. Finally, in some cases, no appropriate design recommendations are available and, thus, experimental investigations can have a key role within the overall process. In this Special Issue, original research studies, review papers, and experimental and/or numerical investigations are presented for the structural performance assessment of buildings and structures under various extreme conditions that are of interest for design.

Keywords

History of engineering & technology --- damping device --- seismic design --- design base shear --- nonlinear response history analysis --- liquid storage tank --- earthquake --- wind --- dynamic response --- fluid–solid interaction --- composite shear wall --- seismic behavior --- quasi-static test --- design strength model --- bored-pile --- global strain extensometer --- pile friction resistance --- real-time monitoring --- snow–wind combined experiment facility --- snowdrift --- field observation --- scale experiments --- similarity criterion --- underwater explosion --- composite pressure hull --- whipping --- breathing --- failure index --- laminated glass (LG) --- free vibrations --- fundamental frequency --- mechanical restraints --- field experiments --- analytical modelling --- Finite Element (FE) numerical modelling --- super large cooling tower --- whole construction process --- wind vibration coefficient --- buckling stability --- ultimate bearing capacity --- snow load --- complex roof --- EOF analysis --- characteristics decomposition --- RABT fire curve --- fire simulation --- tunnel fire --- high temperature --- fire safety --- fire accident --- vertical earthquake motion --- seismic response --- atrium-style metro station --- shaking table test --- wind characteristics --- boundary layer --- typhoon --- hurricane --- field measurement --- train derailment --- derailment containment provisions --- collision testing --- post-derailment behavior --- slurry pipe jacking --- friction resistance --- effective friction coefficient --- pipe-soil-slurry interaction --- lubrication efficiency --- concrete --- blast load --- Monte Carlo analysis --- seismic demand --- pushover --- suction caisson --- suction penetration --- soil plug --- hydraulic gradient --- visual tests --- mountainous valley --- bridge site --- boundary transition section (BTS) --- numerical simulation --- wind tunnel test --- small radius TBM interval --- equivalent continuous model --- Winkler elastic foundation beam theory --- transfer matrix method --- horizontal axis deviation --- tall timber buildings --- timber composites --- seismic retrofitting --- Eurocode 8 --- structural assessment --- masonry buildings --- earthquakes --- seismic loads --- existing structures --- reliability --- rehabilitation --- risk --- blast loading --- welded haunch connection --- steel frame structures --- non-linear dynamic analysis --- ABAQUS --- multiple degree of freedom (MDOF) --- frame ductility ratio --- n/a --- fluid-solid interaction --- snow-wind combined experiment facility


Book
Buildings and Structures under Extreme Loads
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Exceptional loads on buildings and structures may have different causes, including high-strain dynamic effects due to natural hazards, man-made attacks, and accidents, as well as extreme operational conditions (severe temperature variations, humidity, etc.). All of these aspects can be critical for specific structural typologies and/or materials that are particularly sensitive to external conditions. In this regard, dedicated and refined methods are required for their design, analysis, and maintenance under the expected lifetime. There are major challenges related to the structural typology and material properties with respect to the key features of the imposed design load. Further issues can be derived from the need for risk mitigation or retrofit of existing structures as well as from the optimal and safe design of innovative materials/systems. Finally, in some cases, no appropriate design recommendations are available and, thus, experimental investigations can have a key role within the overall process. In this Special Issue, original research studies, review papers, and experimental and/or numerical investigations are presented for the structural performance assessment of buildings and structures under various extreme conditions that are of interest for design.

Keywords

History of engineering & technology --- damping device --- seismic design --- design base shear --- nonlinear response history analysis --- liquid storage tank --- earthquake --- wind --- dynamic response --- fluid–solid interaction --- composite shear wall --- seismic behavior --- quasi-static test --- design strength model --- bored-pile --- global strain extensometer --- pile friction resistance --- real-time monitoring --- snow–wind combined experiment facility --- snowdrift --- field observation --- scale experiments --- similarity criterion --- underwater explosion --- composite pressure hull --- whipping --- breathing --- failure index --- laminated glass (LG) --- free vibrations --- fundamental frequency --- mechanical restraints --- field experiments --- analytical modelling --- Finite Element (FE) numerical modelling --- super large cooling tower --- whole construction process --- wind vibration coefficient --- buckling stability --- ultimate bearing capacity --- snow load --- complex roof --- EOF analysis --- characteristics decomposition --- RABT fire curve --- fire simulation --- tunnel fire --- high temperature --- fire safety --- fire accident --- vertical earthquake motion --- seismic response --- atrium-style metro station --- shaking table test --- wind characteristics --- boundary layer --- typhoon --- hurricane --- field measurement --- train derailment --- derailment containment provisions --- collision testing --- post-derailment behavior --- slurry pipe jacking --- friction resistance --- effective friction coefficient --- pipe-soil-slurry interaction --- lubrication efficiency --- concrete --- blast load --- Monte Carlo analysis --- seismic demand --- pushover --- suction caisson --- suction penetration --- soil plug --- hydraulic gradient --- visual tests --- mountainous valley --- bridge site --- boundary transition section (BTS) --- numerical simulation --- wind tunnel test --- small radius TBM interval --- equivalent continuous model --- Winkler elastic foundation beam theory --- transfer matrix method --- horizontal axis deviation --- tall timber buildings --- timber composites --- seismic retrofitting --- Eurocode 8 --- structural assessment --- masonry buildings --- earthquakes --- seismic loads --- existing structures --- reliability --- rehabilitation --- risk --- blast loading --- welded haunch connection --- steel frame structures --- non-linear dynamic analysis --- ABAQUS --- multiple degree of freedom (MDOF) --- frame ductility ratio --- n/a --- fluid-solid interaction --- snow-wind combined experiment facility


Book
Buildings and Structures under Extreme Loads
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Exceptional loads on buildings and structures may have different causes, including high-strain dynamic effects due to natural hazards, man-made attacks, and accidents, as well as extreme operational conditions (severe temperature variations, humidity, etc.). All of these aspects can be critical for specific structural typologies and/or materials that are particularly sensitive to external conditions. In this regard, dedicated and refined methods are required for their design, analysis, and maintenance under the expected lifetime. There are major challenges related to the structural typology and material properties with respect to the key features of the imposed design load. Further issues can be derived from the need for risk mitigation or retrofit of existing structures as well as from the optimal and safe design of innovative materials/systems. Finally, in some cases, no appropriate design recommendations are available and, thus, experimental investigations can have a key role within the overall process. In this Special Issue, original research studies, review papers, and experimental and/or numerical investigations are presented for the structural performance assessment of buildings and structures under various extreme conditions that are of interest for design.

Keywords

damping device --- seismic design --- design base shear --- nonlinear response history analysis --- liquid storage tank --- earthquake --- wind --- dynamic response --- fluid–solid interaction --- composite shear wall --- seismic behavior --- quasi-static test --- design strength model --- bored-pile --- global strain extensometer --- pile friction resistance --- real-time monitoring --- snow–wind combined experiment facility --- snowdrift --- field observation --- scale experiments --- similarity criterion --- underwater explosion --- composite pressure hull --- whipping --- breathing --- failure index --- laminated glass (LG) --- free vibrations --- fundamental frequency --- mechanical restraints --- field experiments --- analytical modelling --- Finite Element (FE) numerical modelling --- super large cooling tower --- whole construction process --- wind vibration coefficient --- buckling stability --- ultimate bearing capacity --- snow load --- complex roof --- EOF analysis --- characteristics decomposition --- RABT fire curve --- fire simulation --- tunnel fire --- high temperature --- fire safety --- fire accident --- vertical earthquake motion --- seismic response --- atrium-style metro station --- shaking table test --- wind characteristics --- boundary layer --- typhoon --- hurricane --- field measurement --- train derailment --- derailment containment provisions --- collision testing --- post-derailment behavior --- slurry pipe jacking --- friction resistance --- effective friction coefficient --- pipe-soil-slurry interaction --- lubrication efficiency --- concrete --- blast load --- Monte Carlo analysis --- seismic demand --- pushover --- suction caisson --- suction penetration --- soil plug --- hydraulic gradient --- visual tests --- mountainous valley --- bridge site --- boundary transition section (BTS) --- numerical simulation --- wind tunnel test --- small radius TBM interval --- equivalent continuous model --- Winkler elastic foundation beam theory --- transfer matrix method --- horizontal axis deviation --- tall timber buildings --- timber composites --- seismic retrofitting --- Eurocode 8 --- structural assessment --- masonry buildings --- earthquakes --- seismic loads --- existing structures --- reliability --- rehabilitation --- risk --- blast loading --- welded haunch connection --- steel frame structures --- non-linear dynamic analysis --- ABAQUS --- multiple degree of freedom (MDOF) --- frame ductility ratio --- n/a --- fluid-solid interaction --- snow-wind combined experiment facility

Listing 1 - 10 of 10
Sort by