Listing 1 - 10 of 13 | << page >> |
Sort by
|
Choose an application
With increasing power levels and power densities in electronics systems, thermal issues are becoming more and more critical. The elevated temperatures result in changing electrical system parameters, changing the operation of devices, and sometimes even the destruction of devices. To prevent this, the thermal behavior has to be considered in the design phase. This can be done with thermal end electro-thermal design and simulation tools. This Special Issue of Energies, edited by two well-known experts of the field, Prof. Marta Rencz, Budapest University of Technology and Economics, and by Prof. Lorenzo Codecasa, Politecnico di Milano, collects twelve papers carefully selected for the representation of the latest results in thermal and electro-thermal system simulation. These contributions present a good survey of the latest results in one of the most topical areas in the field of electronics: The thermal and electro-thermal simulation of electronic components and systems. Several papers of this issue are extended versions of papers presented at the THERMINIC 2018 Workshop, held in Stockholm in the fall of 2018. The papers presented here deal with modeling and simulation of state-of-the-art applications that are highly critical from the thermal point of view, and around which there is great research activity in both industry and academia. Contributions covered the thermal simulation of electronic packages, electro-thermal advanced modeling in power electronics, multi-physics modeling and simulation of LEDs, and the characterization of interface materials, among other subjects.
thermal interface material --- thermal aging --- modeling --- LED compact thermal models --- niobium pentoxide --- model-order reduction --- ferromagnetic cores --- LED digital twin --- Cauer RC ladder --- in-situ characterization --- electronic packages --- time domain thermoreflectance --- multi-domain compact model --- power LEDs --- DC–DC converters --- structure function --- boundary condition independent --- electric aircraft --- multi-LED --- modelling --- light emitting diodes --- thin film --- JEDEC metrics --- tool agnostic --- power losses --- switching --- dynamic thermal compact model --- thermal transient testing --- reliability --- thermal transient analysis --- thermal simulation --- non-destructive testing --- IGBT --- carbon nanotubes --- compact thermal model --- power semiconductor devices --- SPICE --- phosphor light conversion --- thermal management --- LED luminaire design --- design flow --- thermal characterization --- motor cooling --- thermal phenomena --- silicone dome --- LED --- secondary heat path --- multi-domain modelling --- heating and optical power --- transient analysis --- thermal testability --- thermal conductivity --- multiple heat source
Choose an application
This Special Issue aims to examine high-density solid-state memory devices and technologies from various standpoints in an attempt to foster their continuous success in the future. Considering that broadening of the range of applications will likely offer different types of solid-state memories their chance in the spotlight, the Special Issue is not focused on a specific storage solution but rather embraces all the most relevant solid-state memory devices and technologies currently on stage. Even the subjects dealt with in this Special Issue are widespread, ranging from process and design issues/innovations to the experimental and theoretical analysis of the operation and from the performance and reliability of memory devices and arrays to the exploitation of solid-state memories to pursue new computing paradigms.
Technology: general issues --- History of engineering & technology --- resistive switching memory --- in-memory computing --- crosspoint array --- artificial intelligence --- deep learning --- dielectric --- RTN --- TAT --- Wiener–Khinchin --- transient analysis --- phonon --- surface roughness --- spectral index --- power spectrum --- program suspend --- 3D NAND Flash --- Solid State Drives --- MOSFET --- low-frequency noise --- random telegraph noise --- evaluation method --- array test pattern --- STT-MRAM --- spintronics --- CoFeB --- composite free layer --- low power electronics --- NAND Flash memory --- endurance --- reliability --- oxide trapped charge --- artificial neural networks --- neuromorphic computing --- NOR Flash memory arrays --- program noise --- pulse-width modulation --- 3D NAND --- floating gate cell --- charge-trap cell --- CMOS under array --- bumpless --- TSV --- WOW --- COW --- BBCube --- bandwidth --- yield --- power consumption --- thermal management --- n/a --- Wiener-Khinchin
Choose an application
This Special Issue aims to examine high-density solid-state memory devices and technologies from various standpoints in an attempt to foster their continuous success in the future. Considering that broadening of the range of applications will likely offer different types of solid-state memories their chance in the spotlight, the Special Issue is not focused on a specific storage solution but rather embraces all the most relevant solid-state memory devices and technologies currently on stage. Even the subjects dealt with in this Special Issue are widespread, ranging from process and design issues/innovations to the experimental and theoretical analysis of the operation and from the performance and reliability of memory devices and arrays to the exploitation of solid-state memories to pursue new computing paradigms.
resistive switching memory --- in-memory computing --- crosspoint array --- artificial intelligence --- deep learning --- dielectric --- RTN --- TAT --- Wiener–Khinchin --- transient analysis --- phonon --- surface roughness --- spectral index --- power spectrum --- program suspend --- 3D NAND Flash --- Solid State Drives --- MOSFET --- low-frequency noise --- random telegraph noise --- evaluation method --- array test pattern --- STT-MRAM --- spintronics --- CoFeB --- composite free layer --- low power electronics --- NAND Flash memory --- endurance --- reliability --- oxide trapped charge --- artificial neural networks --- neuromorphic computing --- NOR Flash memory arrays --- program noise --- pulse-width modulation --- 3D NAND --- floating gate cell --- charge-trap cell --- CMOS under array --- bumpless --- TSV --- WOW --- COW --- BBCube --- bandwidth --- yield --- power consumption --- thermal management --- n/a --- Wiener-Khinchin
Choose an application
This Special Issue aims to examine high-density solid-state memory devices and technologies from various standpoints in an attempt to foster their continuous success in the future. Considering that broadening of the range of applications will likely offer different types of solid-state memories their chance in the spotlight, the Special Issue is not focused on a specific storage solution but rather embraces all the most relevant solid-state memory devices and technologies currently on stage. Even the subjects dealt with in this Special Issue are widespread, ranging from process and design issues/innovations to the experimental and theoretical analysis of the operation and from the performance and reliability of memory devices and arrays to the exploitation of solid-state memories to pursue new computing paradigms.
Technology: general issues --- History of engineering & technology --- resistive switching memory --- in-memory computing --- crosspoint array --- artificial intelligence --- deep learning --- dielectric --- RTN --- TAT --- Wiener-Khinchin --- transient analysis --- phonon --- surface roughness --- spectral index --- power spectrum --- program suspend --- 3D NAND Flash --- Solid State Drives --- MOSFET --- low-frequency noise --- random telegraph noise --- evaluation method --- array test pattern --- STT-MRAM --- spintronics --- CoFeB --- composite free layer --- low power electronics --- NAND Flash memory --- endurance --- reliability --- oxide trapped charge --- artificial neural networks --- neuromorphic computing --- NOR Flash memory arrays --- program noise --- pulse-width modulation --- 3D NAND --- floating gate cell --- charge-trap cell --- CMOS under array --- bumpless --- TSV --- WOW --- COW --- BBCube --- bandwidth --- yield --- power consumption --- thermal management
Choose an application
Faced with an ever-growing resource scarcity and environmental regulations, the last 30 years have witnessed the rapid development of various renewable power sources, such as wind, tidal, and solar power generation. The variable and uncertain nature of these resources is well-known, while the utilization of power electronic converters presents new challenges for the stability of the power grid. Consequently, various control and operational strategies have been proposed and implemented by the industry and research community, with a growing requirement for flexibility and load regulation placed on conventional thermal power generation. Against this background, the modelling and control of conventional thermal engines, such as those based on diesel and gasoline, are experiencing serious obstacles when facing increasing environmental concerns. Efficient control that can fulfill the requirements of high efficiency, low pollution, and long durability is an emerging requirement. The modelling, simulation, and control of thermal energy systems are key to providing innovative and effective solutions. Through applying detailed dynamic modelling, a thorough understanding of the thermal conversion mechanism(s) can be achieved, based on which advanced control strategies can be designed to improve the performance of the thermal energy system, both in economic and environmental terms. Simulation studies and test beds are also of great significance for these research activities prior to proceeding to field tests. This Special Issue will contribute a practical and comprehensive forum for exchanging novel research ideas or empirical practices that bridge the modelling, simulation, and control of thermal energy systems. Papers that analyze particular aspects of thermal energy systems, involving, for example, conventional power plants, innovative thermal power generation, various thermal engines, thermal energy storage, and fundamental heat transfer management, on the basis of one or more of the following topics, are invited in this Special Issue: • Power plant modelling, simulation, and control; • Thermal engines; • Thermal energy control in building energy systems; • Combined heat and power (CHP) generation; • Thermal energy storage systems; • Improving thermal comfort technologies; • Optimization of complex thermal systems; • Modelling and control of thermal networks; • Thermal management of fuel cell systems; • Thermal control of solar utilization; • Heat pump control; • Heat exchanger control.
History of engineering & technology --- supercritical circulating fluidized bed --- boiler-turbine unit --- active disturbance rejection control --- burning carbon --- genetic algorithm --- Solar-assisted coal-fired power generation system --- Singular weighted method --- load dispatch --- CSP plant model --- transient analysis --- power tracking control --- two-tank direct energy storage --- electronic device --- flip chip component --- thermal stress --- thermal fatigue --- life prediction --- combustion engine efficiency --- dynamic states --- artificial neural network --- dynamic modeling --- thermal management --- parameter estimation --- energy storage operation and planning --- electric and solar vehicles --- ultra-supercritical unit --- deep neural network --- stacked auto-encoder --- maximum correntropy --- heat exchanger --- forced convection --- film coefficient --- heat transfer --- water properties --- integrated energy system --- operational optimization --- air–fuel ratio --- combustion control --- dynamic matrix control --- power plant control --- high temperature low sag conductor --- coefficient of thermal expansion --- overhead conductor --- low sag performance --- chemical looping --- wavelets --- NARMA model --- generalized predictive control (GPC) --- steam supply scheduling --- exergetic analysis --- multi-objective --- ε-constraint method
Choose an application
This book covers a broad range of research results in the field of Markov and Semi-Markov chains, processes, systems and related emerging fields. The authors of the included research papers are well-known researchers in their field. The book presents the state-of-the-art and ideas for further research for theorists in the fields. Nonetheless, it also provides straightforwardly applicable results for diverse areas of practitioners.
Monte Carlo --- MCMC --- Markov chains --- computational statistics --- bayesian inference --- Non-Homogeneous Markov Systems --- Markov Set Systems --- limiting set --- tail expectation --- asymptotic bound --- quasi-asymptotic independence --- heavy-tailed distribution --- dominated variation --- copula --- branching process --- migration --- continuous time --- generating function --- period-life --- reliability --- redundant systems --- preventive maintenance --- multiple vacations --- process mining --- process modelling --- phase-type models --- process target compliance --- particle filter --- missing data --- single imputation --- impoverishment --- Markov Systems --- open population Markov chain models --- Semi-Markov processes --- controllable Markov jump processes --- compound Poisson processes --- diffusion limits --- stochastic control problem with incomplete information --- novel queuing models in applications --- semi-Markov model --- Markov model --- hybrid semi-Markov model --- manpower planning --- semi-Markov modeling --- occupancy --- first passage time --- duration --- non-homogeneity --- DNA sequences --- state space model --- Kalman filter --- constrained optimization --- two-sided components --- basketball --- Markov chain --- second order --- off-ball screens --- performance --- semi-Markov --- transient analysis --- asymptotic analysis --- n/a
Choose an application
Faced with an ever-growing resource scarcity and environmental regulations, the last 30 years have witnessed the rapid development of various renewable power sources, such as wind, tidal, and solar power generation. The variable and uncertain nature of these resources is well-known, while the utilization of power electronic converters presents new challenges for the stability of the power grid. Consequently, various control and operational strategies have been proposed and implemented by the industry and research community, with a growing requirement for flexibility and load regulation placed on conventional thermal power generation. Against this background, the modelling and control of conventional thermal engines, such as those based on diesel and gasoline, are experiencing serious obstacles when facing increasing environmental concerns. Efficient control that can fulfill the requirements of high efficiency, low pollution, and long durability is an emerging requirement. The modelling, simulation, and control of thermal energy systems are key to providing innovative and effective solutions. Through applying detailed dynamic modelling, a thorough understanding of the thermal conversion mechanism(s) can be achieved, based on which advanced control strategies can be designed to improve the performance of the thermal energy system, both in economic and environmental terms. Simulation studies and test beds are also of great significance for these research activities prior to proceeding to field tests. This Special Issue will contribute a practical and comprehensive forum for exchanging novel research ideas or empirical practices that bridge the modelling, simulation, and control of thermal energy systems. Papers that analyze particular aspects of thermal energy systems, involving, for example, conventional power plants, innovative thermal power generation, various thermal engines, thermal energy storage, and fundamental heat transfer management, on the basis of one or more of the following topics, are invited in this Special Issue: • Power plant modelling, simulation, and control; • Thermal engines; • Thermal energy control in building energy systems; • Combined heat and power (CHP) generation; • Thermal energy storage systems; • Improving thermal comfort technologies; • Optimization of complex thermal systems; • Modelling and control of thermal networks; • Thermal management of fuel cell systems; • Thermal control of solar utilization; • Heat pump control; • Heat exchanger control.
supercritical circulating fluidized bed --- boiler-turbine unit --- active disturbance rejection control --- burning carbon --- genetic algorithm --- Solar-assisted coal-fired power generation system --- Singular weighted method --- load dispatch --- CSP plant model --- transient analysis --- power tracking control --- two-tank direct energy storage --- electronic device --- flip chip component --- thermal stress --- thermal fatigue --- life prediction --- combustion engine efficiency --- dynamic states --- artificial neural network --- dynamic modeling --- thermal management --- parameter estimation --- energy storage operation and planning --- electric and solar vehicles --- ultra-supercritical unit --- deep neural network --- stacked auto-encoder --- maximum correntropy --- heat exchanger --- forced convection --- film coefficient --- heat transfer --- water properties --- integrated energy system --- operational optimization --- air–fuel ratio --- combustion control --- dynamic matrix control --- power plant control --- high temperature low sag conductor --- coefficient of thermal expansion --- overhead conductor --- low sag performance --- chemical looping --- wavelets --- NARMA model --- generalized predictive control (GPC) --- steam supply scheduling --- exergetic analysis --- multi-objective --- ε-constraint method
Choose an application
Faced with an ever-growing resource scarcity and environmental regulations, the last 30 years have witnessed the rapid development of various renewable power sources, such as wind, tidal, and solar power generation. The variable and uncertain nature of these resources is well-known, while the utilization of power electronic converters presents new challenges for the stability of the power grid. Consequently, various control and operational strategies have been proposed and implemented by the industry and research community, with a growing requirement for flexibility and load regulation placed on conventional thermal power generation. Against this background, the modelling and control of conventional thermal engines, such as those based on diesel and gasoline, are experiencing serious obstacles when facing increasing environmental concerns. Efficient control that can fulfill the requirements of high efficiency, low pollution, and long durability is an emerging requirement. The modelling, simulation, and control of thermal energy systems are key to providing innovative and effective solutions. Through applying detailed dynamic modelling, a thorough understanding of the thermal conversion mechanism(s) can be achieved, based on which advanced control strategies can be designed to improve the performance of the thermal energy system, both in economic and environmental terms. Simulation studies and test beds are also of great significance for these research activities prior to proceeding to field tests. This Special Issue will contribute a practical and comprehensive forum for exchanging novel research ideas or empirical practices that bridge the modelling, simulation, and control of thermal energy systems. Papers that analyze particular aspects of thermal energy systems, involving, for example, conventional power plants, innovative thermal power generation, various thermal engines, thermal energy storage, and fundamental heat transfer management, on the basis of one or more of the following topics, are invited in this Special Issue: • Power plant modelling, simulation, and control; • Thermal engines; • Thermal energy control in building energy systems; • Combined heat and power (CHP) generation; • Thermal energy storage systems; • Improving thermal comfort technologies; • Optimization of complex thermal systems; • Modelling and control of thermal networks; • Thermal management of fuel cell systems; • Thermal control of solar utilization; • Heat pump control; • Heat exchanger control.
History of engineering & technology --- supercritical circulating fluidized bed --- boiler-turbine unit --- active disturbance rejection control --- burning carbon --- genetic algorithm --- Solar-assisted coal-fired power generation system --- Singular weighted method --- load dispatch --- CSP plant model --- transient analysis --- power tracking control --- two-tank direct energy storage --- electronic device --- flip chip component --- thermal stress --- thermal fatigue --- life prediction --- combustion engine efficiency --- dynamic states --- artificial neural network --- dynamic modeling --- thermal management --- parameter estimation --- energy storage operation and planning --- electric and solar vehicles --- ultra-supercritical unit --- deep neural network --- stacked auto-encoder --- maximum correntropy --- heat exchanger --- forced convection --- film coefficient --- heat transfer --- water properties --- integrated energy system --- operational optimization --- air–fuel ratio --- combustion control --- dynamic matrix control --- power plant control --- high temperature low sag conductor --- coefficient of thermal expansion --- overhead conductor --- low sag performance --- chemical looping --- wavelets --- NARMA model --- generalized predictive control (GPC) --- steam supply scheduling --- exergetic analysis --- multi-objective --- ε-constraint method
Choose an application
This book covers a broad range of research results in the field of Markov and Semi-Markov chains, processes, systems and related emerging fields. The authors of the included research papers are well-known researchers in their field. The book presents the state-of-the-art and ideas for further research for theorists in the fields. Nonetheless, it also provides straightforwardly applicable results for diverse areas of practitioners.
Research & information: general --- Mathematics & science --- Monte Carlo --- MCMC --- Markov chains --- computational statistics --- bayesian inference --- Non-Homogeneous Markov Systems --- Markov Set Systems --- limiting set --- tail expectation --- asymptotic bound --- quasi-asymptotic independence --- heavy-tailed distribution --- dominated variation --- copula --- branching process --- migration --- continuous time --- generating function --- period-life --- reliability --- redundant systems --- preventive maintenance --- multiple vacations --- process mining --- process modelling --- phase-type models --- process target compliance --- particle filter --- missing data --- single imputation --- impoverishment --- Markov Systems --- open population Markov chain models --- Semi-Markov processes --- controllable Markov jump processes --- compound Poisson processes --- diffusion limits --- stochastic control problem with incomplete information --- novel queuing models in applications --- semi-Markov model --- Markov model --- hybrid semi-Markov model --- manpower planning --- semi-Markov modeling --- occupancy --- first passage time --- duration --- non-homogeneity --- DNA sequences --- state space model --- Kalman filter --- constrained optimization --- two-sided components --- basketball --- Markov chain --- second order --- off-ball screens --- performance --- semi-Markov --- transient analysis --- asymptotic analysis
Choose an application
This book presents the paper form of the Special Issue (SI) on Smart Urban Water Networks. The number and topics of the papers in the SI confirm the growing interest of operators and researchers for the new paradigm of smart networks, as part of the more general smart city. The SI showed that digital information and communication technology (ICT), with the implementation of smart meters and other digital devices, can significantly improve the modelling and the management of urban water networks, contributing to a radical transformation of the traditional paradigm of water utilities. The paper collection in this SI includes different crucial topics such as the reliability, resilience, and performance of water networks, innovative demand management, and the novel challenge of real-time control and operation, along with their implications for cyber-security. The SI collected fourteen papers that provide a wide perspective of solutions, trends, and challenges in the contest of smart urban water networks. Some solutions have already been implemented in pilot sites (i.e., for water network partitioning, cyber-security, and water demand disaggregation and forecasting), while further investigations are required for other methods, e.g., the data-driven approaches for real time control. In all cases, a new deal between academia, industry, and governments must be embraced to start the new era of smart urban water systems.
Technology: general issues --- hydraulic modelling --- pressure control valve --- pressure management --- remote real-time control --- stochastic consumption --- water distribution system --- fault identification --- hydraulic transient --- inverse transient analysis (ITA) --- water distribution network --- optimization approach --- water distribution monitoring --- optimal sensor placement --- water network partitioning --- topological centrality --- smart water system --- framework --- smartness --- cyber wellness --- leakage --- sensitivity --- uncertainty --- entropy --- multi-criteria decision-making --- DEMATEL --- clustering --- district metered area --- network sectorization --- smart city --- water quality monitoring --- Internet of Things --- wireless sensor networks --- water treatment plant --- data analytics --- nitrate --- nitrite --- water demand forecasting --- hybrid model --- error correction --- chaotic time series --- least square support vector machine --- cross-correlation --- data spatial aggregation --- finite population effect --- metering --- sample mean --- sampling design --- standard error --- stochastic analysis --- water demand peak factor --- water distribution networks --- comparative analysis --- hydraulic measure --- multi-criteria decision analysis (MCDA) --- reliability index --- water distribution network (WDN) --- smart stormwater --- machine learning --- cluster analysis --- data science --- flooding detection --- rainwater harvesting --- water trading --- dual reticulation --- decentralized water supply --- agent-based modeling --- urban water management --- urban water consumption --- water demand data --- water data accessibility --- data resolution --- smart meter --- smart water systems --- cyber–physical security --- cyber-security --- cyber–physical attacks --- n/a --- water distribution systems --- cyber-attack detection --- blind sources separation --- FastICA --- cyber-physical security --- cyber-physical attacks
Listing 1 - 10 of 13 | << page >> |
Sort by
|