Listing 1 - 9 of 9 |
Sort by
|
Choose an application
In this work, the realization limits of an impulse-based Ultra-Wideband (UWB) localization system for indoor applications have been thoroughly investigated and verified by measurements. The analysis spans from the position calculation algorithms, through hardware realization and modeling, up to the localization experiments conducted in realistic scenarios. The main focus was put on identification and characterization of limiting factors as well as developing methods to overcome them.
localization --- UWB --- transceiver --- positioning --- ultra-wideband
Choose an application
This thesis consists in the design of a new homodyne radar transceiver to be used in the context of automatic doors. The work focuses on the continuous wave mode (CW) which allows speed measurements, while the frequency modulated continuous wave (FMCW) – which allows range and speed measurements – was developed in a more theoretical way. The central component of this work is a new radar chip developed by Infineon (BGT24LTR22), working in the frequency band from 24GHz to 24.25GHz. It provides analog building blocks for radar applications and fea- tures two transmitting ports as well as two receiving ports. The first phase of this work concerns the antennas : three different types of patch antennas were designed with CST (either 4X1 or 3X1 arrays) with radiation patterns compatible with the automatic door market (elevation beamwidth of 60°). The EIRP was measured as 9.8dBm, 7.3dBm and 6.5dBm for the respective designs. The second phase deals with the transceiver’s architecture and its implementation on a printed circuit board, with Altium. Three different transceivers were designed, each one featuring one patch an- tenna type. The third phase includes the software development with Eclipse IDE, software which is meant to be embedded in an external acquisition board to sample the radar chip output signals. The processing of these signals with Matlab includes a Constant False Alarm Rate algorithm. Dif- ferent tests are performed on the transceivers in the CW mode. Signal-to-noise ratios of 21dB, 18dB and 16dB were respectively measured for each transceiver design. The detection of people in motion is validated with a speed resolution of 0.5km/h. Taking advantage of the MIMO configu- ration (two TX antennas and two RX antennas), it is possible to determine the angle of arrival of detected people. Only one TX antenna was used, because large transient responses were observed when switching between both. Nevertheless, with two RX antennas, we finally demonstrated the ability of the transceivers to separate people at different speeds with an angular precision of 30°, and to reject the parallel flow of people who do not wish the door to open.
Choose an application
The rapid proliferation of the Internet has been driving communication networks closer and closer to their limits, while available bandwidth is disappearing due to an ever-increasing network load. Over the past decade, optical fiber communication technology has increased per fiber data rate from 10 Tb/s to exceeding 10 Pb/s. The major explosion came after the maturity of coherent detection and advanced digital signal processing (DSP). DSP has played a critical role in accommodating channel impairments mitigation, enabling advanced modulation formats for spectral efficiency transmission and realizing flexible bandwidth. This book aims to explore novel, advanced DSP techniques to enable multi-Tb/s/channel optical transmission to address pressing bandwidth and power-efficiency demands. It provides state-of-the-art advances and future perspectives of DSP as well.
equalization --- n/a --- space division multiplexing --- multi-input multi-output --- mode-division multiplexing --- mode-dependent loss --- caching --- neural network --- mitigation of optical transceiver impairments --- four-level pulse amplitude modulation --- least mean squares --- frequency-domain equalization --- nonlinearity compensation --- optical fiber communication --- optical communication --- modulators --- digital signal processing --- quadrature phase-shift keying --- space–time block-coding --- pointing error --- Device to Device --- fiber optics communications --- cycle-slip --- coherent communications --- coherent communication --- pluggable module --- recursive least squares --- data center interconnect --- average symbol length --- pulse position modulation–binary phase shift keying–subcarrier intensity modulation (PPM–BPSK–SIM) --- 400 Gigabit Ethernet --- direct detection --- QSFP-DD transceiver --- low-density parity-check (LDPC) --- coherent detection --- free space optical (FSO) --- carrier phase estimation --- optical communications --- bit error rate (BER) --- machine learning --- fiber optics links and subsystems --- short-reach optical links --- Indian Buffet Process --- pilot-aided-phase-unwrap --- space-time block-coding --- pulse position modulation-binary phase shift keying-subcarrier intensity modulation (PPM-BPSK-SIM)
Choose an application
Visible light communication (VLC) using light-emitting diodes (LEDs) or laser diodes (LDs) has been envisioned as one of the key enabling technologies for 6G and Internet of Things (IoT) systems, owing to its appealing advantages, including abundant and unregulated spectrum resources, no electromagnetic interference (EMI) radiation and high security. However, despite its many advantages, VLC faces several technical challenges, such as the limited bandwidth and severe nonlinearity of opto-electronic devices, link blockage and user mobility. Therefore, significant efforts are needed from the global VLC community to develop VLC technology further. This Special Issue, “Visible Light Communication (VLC)”, provides an opportunity for global researchers to share their new ideas and cutting-edge techniques to address the above-mentioned challenges. The 16 papers published in this Special Issue represent the fascinating progress of VLC in various contexts, including general indoor and underwater scenarios, and the emerging application of machine learning/artificial intelligence (ML/AI) techniques in VLC.
Technology: general issues --- History of engineering & technology --- visible light communication (VLC) --- dimming control --- constant transmission efficiency --- error performance --- light-emitting diode (LED) --- visible light communications --- deep learning --- bit error rate --- orthogonal frequency division multiplexing --- index modulation --- POF --- FSO --- LiFi --- LED --- orthogonal frequency division multiplexing (OFDM) --- power efficiency --- peak-to-average-power ratio (PAPR) --- pre-distorted enhanced --- underwater optical wireless communication (UOWC) --- ADO-OFDM --- gamma-gamma function --- full-duplex --- long-reach --- photon counting --- vehicular visible light communication (VVLC) --- intelligent reflecting surface (IRS) --- the number of mirrors --- energy efficiency (EE) --- carrierless amplitude and phase (CAP) modulation --- pairwise coding (PWC) --- dual-mode index modulation (DM) --- chaotic encryption --- visible light positioning (VLP) --- free-space communication --- RGB LED --- non-orthogonal multiple access (NOMA) --- superposition constellation adjustment --- successive interference cancellation --- bit error ratio --- NOMA triangle --- underwater wireless optical communication --- temporal dispersion --- bandwidth limitation --- Monte Carlo method --- maximum likelihood sequence estimation --- visible light communication --- nonlinear equalization --- reservoir computing --- neural network (NN) --- autoencoder (AE) --- transceiver design --- nonlinearity --- VLC --- predistortion --- coefficient approximation --- BLSTM --- orthogonal frequency-division multiplexing --- sampling frequency offset --- visible light communications (VLC) --- mmWave communications --- channel modeling --- channel propagation characteristics --- path loss --- delay spread (DS) --- Ricean K-factor --- cluster characteristics --- visible light communication (VLC) --- dimming control --- constant transmission efficiency --- error performance --- light-emitting diode (LED) --- visible light communications --- deep learning --- bit error rate --- orthogonal frequency division multiplexing --- index modulation --- POF --- FSO --- LiFi --- LED --- orthogonal frequency division multiplexing (OFDM) --- power efficiency --- peak-to-average-power ratio (PAPR) --- pre-distorted enhanced --- underwater optical wireless communication (UOWC) --- ADO-OFDM --- gamma-gamma function --- full-duplex --- long-reach --- photon counting --- vehicular visible light communication (VVLC) --- intelligent reflecting surface (IRS) --- the number of mirrors --- energy efficiency (EE) --- carrierless amplitude and phase (CAP) modulation --- pairwise coding (PWC) --- dual-mode index modulation (DM) --- chaotic encryption --- visible light positioning (VLP) --- free-space communication --- RGB LED --- non-orthogonal multiple access (NOMA) --- superposition constellation adjustment --- successive interference cancellation --- bit error ratio --- NOMA triangle --- underwater wireless optical communication --- temporal dispersion --- bandwidth limitation --- Monte Carlo method --- maximum likelihood sequence estimation --- visible light communication --- nonlinear equalization --- reservoir computing --- neural network (NN) --- autoencoder (AE) --- transceiver design --- nonlinearity --- VLC --- predistortion --- coefficient approximation --- BLSTM --- orthogonal frequency-division multiplexing --- sampling frequency offset --- visible light communications (VLC) --- mmWave communications --- channel modeling --- channel propagation characteristics --- path loss --- delay spread (DS) --- Ricean K-factor --- cluster characteristics
Choose an application
Optics and photonics are among the key technologies of the 21st century, and offer potential for novel applications in areas such as sensing and spectroscopy, analytics, monitoring, biomedical imaging/diagnostics, and optical communication technology. The high degree of control over light fields, together with the capabilities of modern processing and integration technology, enables new optical measurement systems with enhanced functionality and sensitivity. They are attractive for a range of applications that were previously inaccessible. This Special Issue aims to provide an overview of some of the most advanced application areas in optics and photonics and indicate the broad potential for the future.
Technology: general issues --- optical --- electric-field --- sensor --- measurement --- transient voltage --- AC power grid --- Pockels effect --- dermatoscopy --- skin screening --- biomedical imaging --- fiber optic sensor --- Sagnac loop --- intensity-modulated --- DWDM --- strain sensor --- structural health monitoring (SHM) --- functionalized carbon structure (FCS) --- carbon reinforced concrete (CRC) --- fiber optic sensor (FOS) --- optical glass fiber --- wavefront sensor --- spatial light modulator --- contour-sum method --- topological charge --- orbital angular momentum --- optical coherence tomography --- Monte Carlo simulation --- structural imaging --- functional sensing --- optical scatterometry --- inverse problem --- profile reconstruction --- dependence analysis --- data refinement --- electro-optic dual-comb interferometry --- laser Doppler velocimetry --- Traceability --- sub-nanosecond laser --- high peak power --- Nd:YVO4 --- stimulated Raman scattering (SRS) --- thermal fracture --- wireless NoC (WiNoC) --- graphene based WiNoCs (GWiNoCs) --- wireless nanosensor networks (WNSNs) --- surface plasmon polariton (SPP) --- GFET --- multiple-input-multiple-output (MIMO) --- graphennas --- THz transceiver --- Mode Division Multiplexing (MDM) --- Few-Mode Fiber (FMF) --- principle mode groups (PMG) --- Bragg grating (BG) --- multi-mode fiber bragg grating --- multi-parameter sensing --- DAS --- fiber optic sensing --- train tracking --- pattern recognition --- hybrid lens --- optical wireless communications --- Li-Fi --- freeform lens --- optic design --- rotary interfaces --- rotary joint --- wireless rotary electrical interface --- rotating electrical connectors --- full-duplex data transfer --- Gigabit-Ethernet --- industrial communications --- real-time --- pathogen detection --- microfluidics --- image processing --- computational algorithms --- integrated optics and photonics --- integrated polymer optics --- organic laser --- integration --- polymeric waveguide --- Lab-on-a-Chip --- fiber optical sensing --- biosensing --- optofluidics --- integrated optics and photoncis --- optical analytics --- medical imaging and diagnostics --- optical communication technology --- distributed sensing
Choose an application
Visible light communication (VLC) using light-emitting diodes (LEDs) or laser diodes (LDs) has been envisioned as one of the key enabling technologies for 6G and Internet of Things (IoT) systems, owing to its appealing advantages, including abundant and unregulated spectrum resources, no electromagnetic interference (EMI) radiation and high security. However, despite its many advantages, VLC faces several technical challenges, such as the limited bandwidth and severe nonlinearity of opto-electronic devices, link blockage and user mobility. Therefore, significant efforts are needed from the global VLC community to develop VLC technology further. This Special Issue, “Visible Light Communication (VLC)”, provides an opportunity for global researchers to share their new ideas and cutting-edge techniques to address the above-mentioned challenges. The 16 papers published in this Special Issue represent the fascinating progress of VLC in various contexts, including general indoor and underwater scenarios, and the emerging application of machine learning/artificial intelligence (ML/AI) techniques in VLC.
Technology: general issues --- History of engineering & technology --- visible light communication (VLC) --- dimming control --- constant transmission efficiency --- error performance --- light-emitting diode (LED) --- visible light communications --- deep learning --- bit error rate --- orthogonal frequency division multiplexing --- index modulation --- POF --- FSO --- LiFi --- LED --- orthogonal frequency division multiplexing (OFDM) --- power efficiency --- peak-to-average-power ratio (PAPR) --- pre-distorted enhanced --- underwater optical wireless communication (UOWC) --- ADO-OFDM --- gamma–gamma function --- full-duplex --- long-reach --- photon counting --- vehicular visible light communication (VVLC) --- intelligent reflecting surface (IRS) --- the number of mirrors --- energy efficiency (EE) --- carrierless amplitude and phase (CAP) modulation --- pairwise coding (PWC) --- dual-mode index modulation (DM) --- chaotic encryption --- visible light positioning (VLP) --- free-space communication --- RGB LED --- non-orthogonal multiple access (NOMA) --- superposition constellation adjustment --- successive interference cancellation --- bit error ratio --- NOMA triangle --- underwater wireless optical communication --- temporal dispersion --- bandwidth limitation --- Monte Carlo method --- maximum likelihood sequence estimation --- visible light communication --- nonlinear equalization --- reservoir computing --- neural network (NN) --- autoencoder (AE) --- transceiver design --- nonlinearity --- VLC --- predistortion --- coefficient approximation --- BLSTM --- orthogonal frequency-division multiplexing --- sampling frequency offset --- visible light communications (VLC) --- mmWave communications --- channel modeling --- channel propagation characteristics --- path loss --- delay spread (DS) --- Ricean K-factor --- cluster characteristics --- n/a --- gamma-gamma function
Choose an application
Visible light communication (VLC) using light-emitting diodes (LEDs) or laser diodes (LDs) has been envisioned as one of the key enabling technologies for 6G and Internet of Things (IoT) systems, owing to its appealing advantages, including abundant and unregulated spectrum resources, no electromagnetic interference (EMI) radiation and high security. However, despite its many advantages, VLC faces several technical challenges, such as the limited bandwidth and severe nonlinearity of opto-electronic devices, link blockage and user mobility. Therefore, significant efforts are needed from the global VLC community to develop VLC technology further. This Special Issue, “Visible Light Communication (VLC)”, provides an opportunity for global researchers to share their new ideas and cutting-edge techniques to address the above-mentioned challenges. The 16 papers published in this Special Issue represent the fascinating progress of VLC in various contexts, including general indoor and underwater scenarios, and the emerging application of machine learning/artificial intelligence (ML/AI) techniques in VLC.
visible light communication (VLC) --- dimming control --- constant transmission efficiency --- error performance --- light-emitting diode (LED) --- visible light communications --- deep learning --- bit error rate --- orthogonal frequency division multiplexing --- index modulation --- POF --- FSO --- LiFi --- LED --- orthogonal frequency division multiplexing (OFDM) --- power efficiency --- peak-to-average-power ratio (PAPR) --- pre-distorted enhanced --- underwater optical wireless communication (UOWC) --- ADO-OFDM --- gamma–gamma function --- full-duplex --- long-reach --- photon counting --- vehicular visible light communication (VVLC) --- intelligent reflecting surface (IRS) --- the number of mirrors --- energy efficiency (EE) --- carrierless amplitude and phase (CAP) modulation --- pairwise coding (PWC) --- dual-mode index modulation (DM) --- chaotic encryption --- visible light positioning (VLP) --- free-space communication --- RGB LED --- non-orthogonal multiple access (NOMA) --- superposition constellation adjustment --- successive interference cancellation --- bit error ratio --- NOMA triangle --- underwater wireless optical communication --- temporal dispersion --- bandwidth limitation --- Monte Carlo method --- maximum likelihood sequence estimation --- visible light communication --- nonlinear equalization --- reservoir computing --- neural network (NN) --- autoencoder (AE) --- transceiver design --- nonlinearity --- VLC --- predistortion --- coefficient approximation --- BLSTM --- orthogonal frequency-division multiplexing --- sampling frequency offset --- visible light communications (VLC) --- mmWave communications --- channel modeling --- channel propagation characteristics --- path loss --- delay spread (DS) --- Ricean K-factor --- cluster characteristics --- n/a --- gamma-gamma function
Choose an application
Optics and photonics are among the key technologies of the 21st century, and offer potential for novel applications in areas such as sensing and spectroscopy, analytics, monitoring, biomedical imaging/diagnostics, and optical communication technology. The high degree of control over light fields, together with the capabilities of modern processing and integration technology, enables new optical measurement systems with enhanced functionality and sensitivity. They are attractive for a range of applications that were previously inaccessible. This Special Issue aims to provide an overview of some of the most advanced application areas in optics and photonics and indicate the broad potential for the future.
optical --- electric-field --- sensor --- measurement --- transient voltage --- AC power grid --- Pockels effect --- dermatoscopy --- skin screening --- biomedical imaging --- fiber optic sensor --- Sagnac loop --- intensity-modulated --- DWDM --- strain sensor --- structural health monitoring (SHM) --- functionalized carbon structure (FCS) --- carbon reinforced concrete (CRC) --- fiber optic sensor (FOS) --- optical glass fiber --- wavefront sensor --- spatial light modulator --- contour-sum method --- topological charge --- orbital angular momentum --- optical coherence tomography --- Monte Carlo simulation --- structural imaging --- functional sensing --- optical scatterometry --- inverse problem --- profile reconstruction --- dependence analysis --- data refinement --- electro-optic dual-comb interferometry --- laser Doppler velocimetry --- Traceability --- sub-nanosecond laser --- high peak power --- Nd:YVO4 --- stimulated Raman scattering (SRS) --- thermal fracture --- wireless NoC (WiNoC) --- graphene based WiNoCs (GWiNoCs) --- wireless nanosensor networks (WNSNs) --- surface plasmon polariton (SPP) --- GFET --- multiple-input-multiple-output (MIMO) --- graphennas --- THz transceiver --- Mode Division Multiplexing (MDM) --- Few-Mode Fiber (FMF) --- principle mode groups (PMG) --- Bragg grating (BG) --- multi-mode fiber bragg grating --- multi-parameter sensing --- DAS --- fiber optic sensing --- train tracking --- pattern recognition --- hybrid lens --- optical wireless communications --- Li-Fi --- freeform lens --- optic design --- rotary interfaces --- rotary joint --- wireless rotary electrical interface --- rotating electrical connectors --- full-duplex data transfer --- Gigabit-Ethernet --- industrial communications --- real-time --- pathogen detection --- microfluidics --- image processing --- computational algorithms --- integrated optics and photonics --- integrated polymer optics --- organic laser --- integration --- polymeric waveguide --- Lab-on-a-Chip --- fiber optical sensing --- biosensing --- optofluidics --- integrated optics and photoncis --- optical analytics --- medical imaging and diagnostics --- optical communication technology --- distributed sensing
Choose an application
Optics and photonics are among the key technologies of the 21st century, and offer potential for novel applications in areas such as sensing and spectroscopy, analytics, monitoring, biomedical imaging/diagnostics, and optical communication technology. The high degree of control over light fields, together with the capabilities of modern processing and integration technology, enables new optical measurement systems with enhanced functionality and sensitivity. They are attractive for a range of applications that were previously inaccessible. This Special Issue aims to provide an overview of some of the most advanced application areas in optics and photonics and indicate the broad potential for the future.
Technology: general issues --- optical --- electric-field --- sensor --- measurement --- transient voltage --- AC power grid --- Pockels effect --- dermatoscopy --- skin screening --- biomedical imaging --- fiber optic sensor --- Sagnac loop --- intensity-modulated --- DWDM --- strain sensor --- structural health monitoring (SHM) --- functionalized carbon structure (FCS) --- carbon reinforced concrete (CRC) --- fiber optic sensor (FOS) --- optical glass fiber --- wavefront sensor --- spatial light modulator --- contour-sum method --- topological charge --- orbital angular momentum --- optical coherence tomography --- Monte Carlo simulation --- structural imaging --- functional sensing --- optical scatterometry --- inverse problem --- profile reconstruction --- dependence analysis --- data refinement --- electro-optic dual-comb interferometry --- laser Doppler velocimetry --- Traceability --- sub-nanosecond laser --- high peak power --- Nd:YVO4 --- stimulated Raman scattering (SRS) --- thermal fracture --- wireless NoC (WiNoC) --- graphene based WiNoCs (GWiNoCs) --- wireless nanosensor networks (WNSNs) --- surface plasmon polariton (SPP) --- GFET --- multiple-input-multiple-output (MIMO) --- graphennas --- THz transceiver --- Mode Division Multiplexing (MDM) --- Few-Mode Fiber (FMF) --- principle mode groups (PMG) --- Bragg grating (BG) --- multi-mode fiber bragg grating --- multi-parameter sensing --- DAS --- fiber optic sensing --- train tracking --- pattern recognition --- hybrid lens --- optical wireless communications --- Li-Fi --- freeform lens --- optic design --- rotary interfaces --- rotary joint --- wireless rotary electrical interface --- rotating electrical connectors --- full-duplex data transfer --- Gigabit-Ethernet --- industrial communications --- real-time --- pathogen detection --- microfluidics --- image processing --- computational algorithms --- integrated optics and photonics --- integrated polymer optics --- organic laser --- integration --- polymeric waveguide --- Lab-on-a-Chip --- fiber optical sensing --- biosensing --- optofluidics --- integrated optics and photoncis --- optical analytics --- medical imaging and diagnostics --- optical communication technology --- distributed sensing --- optical --- electric-field --- sensor --- measurement --- transient voltage --- AC power grid --- Pockels effect --- dermatoscopy --- skin screening --- biomedical imaging --- fiber optic sensor --- Sagnac loop --- intensity-modulated --- DWDM --- strain sensor --- structural health monitoring (SHM) --- functionalized carbon structure (FCS) --- carbon reinforced concrete (CRC) --- fiber optic sensor (FOS) --- optical glass fiber --- wavefront sensor --- spatial light modulator --- contour-sum method --- topological charge --- orbital angular momentum --- optical coherence tomography --- Monte Carlo simulation --- structural imaging --- functional sensing --- optical scatterometry --- inverse problem --- profile reconstruction --- dependence analysis --- data refinement --- electro-optic dual-comb interferometry --- laser Doppler velocimetry --- Traceability --- sub-nanosecond laser --- high peak power --- Nd:YVO4 --- stimulated Raman scattering (SRS) --- thermal fracture --- wireless NoC (WiNoC) --- graphene based WiNoCs (GWiNoCs) --- wireless nanosensor networks (WNSNs) --- surface plasmon polariton (SPP) --- GFET --- multiple-input-multiple-output (MIMO) --- graphennas --- THz transceiver --- Mode Division Multiplexing (MDM) --- Few-Mode Fiber (FMF) --- principle mode groups (PMG) --- Bragg grating (BG) --- multi-mode fiber bragg grating --- multi-parameter sensing --- DAS --- fiber optic sensing --- train tracking --- pattern recognition --- hybrid lens --- optical wireless communications --- Li-Fi --- freeform lens --- optic design --- rotary interfaces --- rotary joint --- wireless rotary electrical interface --- rotating electrical connectors --- full-duplex data transfer --- Gigabit-Ethernet --- industrial communications --- real-time --- pathogen detection --- microfluidics --- image processing --- computational algorithms --- integrated optics and photonics --- integrated polymer optics --- organic laser --- integration --- polymeric waveguide --- Lab-on-a-Chip --- fiber optical sensing --- biosensing --- optofluidics --- integrated optics and photoncis --- optical analytics --- medical imaging and diagnostics --- optical communication technology --- distributed sensing
Listing 1 - 9 of 9 |
Sort by
|