Listing 1 - 4 of 4 |
Sort by
|
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
topological constraint theory (TCT) --- topological phases --- fragility index --- modulated-DSC --- molecular dynamics --- Raman scattering --- chalcogenides --- statistical mechanics
Choose an application
Cette thèse de master présente le développement et l’application de réseaux neuronaux pour la reconnaissance de structures topologiques, en particulier les skyrmions et anti-skyrmions magnétiques. Les phases topologiques de la matière, caractérisées par leurs propriétés géométriques plutôt que par des paramètres d’ordre locaux, ont des implications significatives en spintronique en raison de leurs propriétés de transport particulières. Par exemple, les skyrmions peuvent être déplacés par des courants électriques et servir de porteurs d’informations potentiels. Ces applications potentielles nécessitent une analyse précise de leurs propriétés dynamiques. Cependant, les méthodes traditionnelles pour localiser et analyser la dynamique des structures topologiques impliquent des algorithmes complexes et ne sont valides qu’à 0 Kelvin. Pour surmonter ces limitations, cette recherche exploite des techniques d’apprentissage profond, y compris les réseaux neuronaux Feedforward, les réseaux de neurones convolutionnels et les architectures UNet. Des bases de données de structures magnétiques synthétiques ont été générées et étiquetées, servant de base à l’entraînement de ces réseaux. Les résultats démontrent l’efficacité de ces modèles pour classifier avec précision les structures topologiques avec une précision supérieure à 97% sur des données inédites. Malgré ce succès, des défis tels que les biais dans les ensembles de données d’entraînement et le surapprentissage du modèle ont été identifiés, suggérant la nécessité d’affinements supplémentaires. Ce travail jette les bases de futures recherches sur le comportement dynamique des skyrmions et leurs applications potentielles dans les dispositifs spintroniques de nouvelle génération. This master thesis presents the development and application of neural networks for the recognition of topological structures, specifically magnetic skyrmions and anti-skyrmions. Topological phases of matter, characterized by their geometric properties rather than local order parameters, have significant implications in spintronics as they have special transport properties. For example, skyrmions can be moved by electrical currents and serve as potential information carriers. These potential applications require a precise analysis of their dynamical properties. However, traditional methods to locate and analyse topological structures dynamics are involving complex algorithm and are only valid at 0 Kelvin. To overcome these limitations, this research leverages deep learning techniques, including Feedforward Neural Networks, Convolutional Neural Networks, and UNet architectures. Databases of synthetic magnetic structures were generated and labelled, serving as the foundation for training these networks. The results demonstrate the effectiveness of these models in accurately classifying topological structures with over 97% accuracy on unseen data. Despite the success, challenges such as bias in the training datasets and model overfitting were identified, suggesting the need for further refinement. This work lays the groundwork for future research on the dynamic behaviour of skyrmions and their potential applications in next-generation spintronic devices.
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
Civil engineering, surveying & building --- Mechanical engineering & materials --- topological constraint theory (TCT) --- topological phases --- fragility index --- modulated-DSC --- molecular dynamics --- Raman scattering --- chalcogenides --- statistical mechanics --- topological constraint theory (TCT) --- topological phases --- fragility index --- modulated-DSC --- molecular dynamics --- Raman scattering --- chalcogenides --- statistical mechanics
Listing 1 - 4 of 4 |
Sort by
|