Listing 1 - 7 of 7 |
Sort by
|
Choose an application
This series, Chemical Sensors: Simulation and Modeling, is the perfect complement to Momentum Press's six-volume reference series, Chemical Sensors: Fundamentals of Sensing Materials and Chemical Sensors: Comprehensive Sensor Technologies, which present detailed information about materials, technologies, fabrication, and applications of various devices for chemical sensing. Chemical sensors are integral to the automation of myriad industrial processes and everyday monitoring of such activities as public safety, engine performance, medical therapeutics, and many more. Despite the large number of chemical sensors already on the market, selection and design of a suitable sensor for a new application is a difficult task for the design engineer. Careful selection of the sensing material, sensor platform, technology of synthesis or deposition of sensitive materials, appropriate coatings and membranes, and the sampling system is very important, because those decisions can determine the specificity, sensitivity, response time, and stability of the final device.
Chemical detectors. --- Metallic oxides. --- Metal oxides --- Metals --- Oxides --- Chemical sensors --- Chemical apparatus --- Detectors --- chemical sensors --- metal oxides --- thin-film metal oxides --- tin dioxide --- zinc oxide --- density functional theory --- solid-state materials --- gas sensors --- nanostructures --- grain boundary effects --- chemisorption --- first-principals modeling
Choose an application
This book contains the articles collected for the Special Issue entitled "Micro-nano Surface Functionalization of Materials and Thin Films for Optical Applications" in the journal Coatings (ISSN 2079-6412). These selected articles provide a meaningful overview of recent advances and concepts beyond the state-of-the-art regarding surface functionalization of materials and deposition of thin films to be used in optical applications. The aim was to cover all relevant aspects of the topic (simulation, design, fabrication, characterization and applications) with a special emphasis on non-conventional methods for surface modification of materials, combinations of mature fabrication routes with emerging technologies (i.e., additive manufacturing) and large-area fabrication concepts to pave the way to an industrial utilization of the developed materials. This overview comprises the recent work of reputed scientists from Germany, Austria, Spain and India on: - New developments on the scale-up deposition of transparent conductive materials by magnetron sputtering,- Design of hierarchical surface structures at different scale lengths for nanoimprinting of optical nano- and micro-structures, - Non-conventional preparation of rutile-type TiO2 films at room temperature for optical applications on heat-sensitive substrates, - Design of spectrally selective solar absorber coatings based on computational simulation and ellipsometry measurements.
reactive magnetron sputtering --- transparent conductive oxide --- electronic transport --- doping efficiency --- tin dioxide --- Nanoimprint lithography --- UV-NIL --- reversal NIL --- liquid transfer imprint lithography --- hierarchical structures --- optical micro- and nanostructures --- ITO thin films --- magnetron sputtering --- low temperature deposition --- oxygen flow --- microstructure --- optoelectronic properties --- transparent heaters --- titanium oxide films --- filtered cathodic vacuum arc --- rutile --- optical coatings --- spectrally selective absorber --- multilayer stack --- spectroscopic ellipsometry --- optical constants --- simulation
Choose an application
This book contains the articles collected for the Special Issue entitled "Micro-nano Surface Functionalization of Materials and Thin Films for Optical Applications" in the journal Coatings (ISSN 2079-6412). These selected articles provide a meaningful overview of recent advances and concepts beyond the state-of-the-art regarding surface functionalization of materials and deposition of thin films to be used in optical applications. The aim was to cover all relevant aspects of the topic (simulation, design, fabrication, characterization and applications) with a special emphasis on non-conventional methods for surface modification of materials, combinations of mature fabrication routes with emerging technologies (i.e., additive manufacturing) and large-area fabrication concepts to pave the way to an industrial utilization of the developed materials. This overview comprises the recent work of reputed scientists from Germany, Austria, Spain and India on: - New developments on the scale-up deposition of transparent conductive materials by magnetron sputtering,- Design of hierarchical surface structures at different scale lengths for nanoimprinting of optical nano- and micro-structures, - Non-conventional preparation of rutile-type TiO2 films at room temperature for optical applications on heat-sensitive substrates, - Design of spectrally selective solar absorber coatings based on computational simulation and ellipsometry measurements.
Research & information: general --- reactive magnetron sputtering --- transparent conductive oxide --- electronic transport --- doping efficiency --- tin dioxide --- Nanoimprint lithography --- UV-NIL --- reversal NIL --- liquid transfer imprint lithography --- hierarchical structures --- optical micro- and nanostructures --- ITO thin films --- magnetron sputtering --- low temperature deposition --- oxygen flow --- microstructure --- optoelectronic properties --- transparent heaters --- titanium oxide films --- filtered cathodic vacuum arc --- rutile --- optical coatings --- spectrally selective absorber --- multilayer stack --- spectroscopic ellipsometry --- optical constants --- simulation --- reactive magnetron sputtering --- transparent conductive oxide --- electronic transport --- doping efficiency --- tin dioxide --- Nanoimprint lithography --- UV-NIL --- reversal NIL --- liquid transfer imprint lithography --- hierarchical structures --- optical micro- and nanostructures --- ITO thin films --- magnetron sputtering --- low temperature deposition --- oxygen flow --- microstructure --- optoelectronic properties --- transparent heaters --- titanium oxide films --- filtered cathodic vacuum arc --- rutile --- optical coatings --- spectrally selective absorber --- multilayer stack --- spectroscopic ellipsometry --- optical constants --- simulation
Choose an application
This series, Chemical Sensors: Simulation and Modeling, is the perfect complement to Momentum Press's six-volume reference series, Chemical Sensors: Fundamentals of Sensing Materials and Chemical Sensors: Comprehensive Sensor Technologies, which present detailed information about materials, technologies, fabrication, and applications of various devices for chemical sensing. Chemical sensors are integral to the automation of myriad industrial processes and everyday monitoring of such activities as public safety, engine performance, medical therapeutics, and many more.
Chemical detectors. --- Nanostructured materials. --- Nanomaterials --- Nanometer materials --- Nanophase materials --- Nanostructure controlled materials --- Nanostructure materials --- Ultra-fine microstructure materials --- Microstructure --- Nanotechnology --- Chemical sensors --- Chemical apparatus --- Detectors --- chemical sensors --- conductometric sensors --- gas sensing --- resistive chemical sensors --- nanosensors --- metal oxide sensors --- spinel ferrite gas sensors --- semiconductor gas sensors --- mixed metal oxide nanocomposites --- tin dioxide-based gas sensors --- transition metal-doped single-walled carbon nanotubes --- aluminum-doped graphene --- nanowire-based field-effect biosensors
Choose an application
This book contains the articles collected for the Special Issue entitled "Micro-nano Surface Functionalization of Materials and Thin Films for Optical Applications" in the journal Coatings (ISSN 2079-6412). These selected articles provide a meaningful overview of recent advances and concepts beyond the state-of-the-art regarding surface functionalization of materials and deposition of thin films to be used in optical applications. The aim was to cover all relevant aspects of the topic (simulation, design, fabrication, characterization and applications) with a special emphasis on non-conventional methods for surface modification of materials, combinations of mature fabrication routes with emerging technologies (i.e., additive manufacturing) and large-area fabrication concepts to pave the way to an industrial utilization of the developed materials. This overview comprises the recent work of reputed scientists from Germany, Austria, Spain and India on: - New developments on the scale-up deposition of transparent conductive materials by magnetron sputtering,- Design of hierarchical surface structures at different scale lengths for nanoimprinting of optical nano- and micro-structures, - Non-conventional preparation of rutile-type TiO2 films at room temperature for optical applications on heat-sensitive substrates, - Design of spectrally selective solar absorber coatings based on computational simulation and ellipsometry measurements.
Research & information: general --- reactive magnetron sputtering --- transparent conductive oxide --- electronic transport --- doping efficiency --- tin dioxide --- Nanoimprint lithography --- UV-NIL --- reversal NIL --- liquid transfer imprint lithography --- hierarchical structures --- optical micro- and nanostructures --- ITO thin films --- magnetron sputtering --- low temperature deposition --- oxygen flow --- microstructure --- optoelectronic properties --- transparent heaters --- titanium oxide films --- filtered cathodic vacuum arc --- rutile --- optical coatings --- spectrally selective absorber --- multilayer stack --- spectroscopic ellipsometry --- optical constants --- simulation
Choose an application
The conversion and storage of renewable energy sources is key to the transition from a fossil-fuel-based economy to a low-carbon society. Many new game-changing materials have already impacted our lives and contributed to a reduction in carbon dioxide emissions, such as high-efficiency photovoltaic cells, blue light-emitting diodes, and cathodes for Li-ion batteries. However, new breakthroughs in materials science and technology are required to boost the clean energy transition. All success stories in materials science are built upon a tailored control of the interconnected processes that take place at the nanoscale, such as charge excitation, charge transport and recombination, ionic diffusion, intercalation, and the interfacial transfer of matter and charge. Nanostructured materials, thanks to their ultra-small building blocks and the high interface-to-volume ratio, offer a rich toolbox to scientists that aspire to improve the energy conversion efficiency or the power and energy density of a material. Furthermore, new phenomena arise in nanoparticles, such as surface plasmon resonance, superparamegntism, and exciton confinement. The ten articles published in this Special Issue showcase the different applications of nanomaterials in the field of energy storage and conversion, including electrodes for Li-ion batteries and beyond, photovoltaic materials, pyroelectric energy harvesting, and (photo)catalytic processes.
nanoparticle --- nanoalloy --- catalyst --- CO2 reduction --- hydrocarbon --- synthetic fuel --- iron --- cobalt --- perovskite solar cell --- hole transport layer --- CuCrO2 nanoparticles --- thermal stability --- light stability --- aluminum ion batteries --- reduced graphene oxide --- tin dioxide --- 3D electrode materials --- mechanical properties --- TiO2 --- azo dye --- wastewater treatment --- photocatalysis --- sodium formate --- dry etching --- black silicon --- photovoltaics --- plasmonics --- heterogeneous catalysis --- nanoparticles --- single molecule localization --- super-resolution microscopy --- surface-enhanced Raman spectroscopy --- Li-ion batteries --- anodes --- intermetallics --- silicon --- composites --- nanomaterials --- coating --- mechanochemistry --- zinc sulfide --- wurtzite --- co-precipitation synthesis --- solvent recycling --- green synthesis --- scaling up --- pilot plant --- chalcopyrite compounds --- nanocrystals --- hydrothermal --- spin coating --- EIS --- conductivity --- lithium-ion batteries --- SnO2 --- nanoarray --- anode --- high-rate --- n/a
Choose an application
The conversion and storage of renewable energy sources is key to the transition from a fossil-fuel-based economy to a low-carbon society. Many new game-changing materials have already impacted our lives and contributed to a reduction in carbon dioxide emissions, such as high-efficiency photovoltaic cells, blue light-emitting diodes, and cathodes for Li-ion batteries. However, new breakthroughs in materials science and technology are required to boost the clean energy transition. All success stories in materials science are built upon a tailored control of the interconnected processes that take place at the nanoscale, such as charge excitation, charge transport and recombination, ionic diffusion, intercalation, and the interfacial transfer of matter and charge. Nanostructured materials, thanks to their ultra-small building blocks and the high interface-to-volume ratio, offer a rich toolbox to scientists that aspire to improve the energy conversion efficiency or the power and energy density of a material. Furthermore, new phenomena arise in nanoparticles, such as surface plasmon resonance, superparamegntism, and exciton confinement. The ten articles published in this Special Issue showcase the different applications of nanomaterials in the field of energy storage and conversion, including electrodes for Li-ion batteries and beyond, photovoltaic materials, pyroelectric energy harvesting, and (photo)catalytic processes.
Research & information: general --- Physics --- nanoparticle --- nanoalloy --- catalyst --- CO2 reduction --- hydrocarbon --- synthetic fuel --- iron --- cobalt --- perovskite solar cell --- hole transport layer --- CuCrO2 nanoparticles --- thermal stability --- light stability --- aluminum ion batteries --- reduced graphene oxide --- tin dioxide --- 3D electrode materials --- mechanical properties --- TiO2 --- azo dye --- wastewater treatment --- photocatalysis --- sodium formate --- dry etching --- black silicon --- photovoltaics --- plasmonics --- heterogeneous catalysis --- nanoparticles --- single molecule localization --- super-resolution microscopy --- surface-enhanced Raman spectroscopy --- Li-ion batteries --- anodes --- intermetallics --- silicon --- composites --- nanomaterials --- coating --- mechanochemistry --- zinc sulfide --- wurtzite --- co-precipitation synthesis --- solvent recycling --- green synthesis --- scaling up --- pilot plant --- chalcopyrite compounds --- nanocrystals --- hydrothermal --- spin coating --- EIS --- conductivity --- lithium-ion batteries --- SnO2 --- nanoarray --- anode --- high-rate --- nanoparticle --- nanoalloy --- catalyst --- CO2 reduction --- hydrocarbon --- synthetic fuel --- iron --- cobalt --- perovskite solar cell --- hole transport layer --- CuCrO2 nanoparticles --- thermal stability --- light stability --- aluminum ion batteries --- reduced graphene oxide --- tin dioxide --- 3D electrode materials --- mechanical properties --- TiO2 --- azo dye --- wastewater treatment --- photocatalysis --- sodium formate --- dry etching --- black silicon --- photovoltaics --- plasmonics --- heterogeneous catalysis --- nanoparticles --- single molecule localization --- super-resolution microscopy --- surface-enhanced Raman spectroscopy --- Li-ion batteries --- anodes --- intermetallics --- silicon --- composites --- nanomaterials --- coating --- mechanochemistry --- zinc sulfide --- wurtzite --- co-precipitation synthesis --- solvent recycling --- green synthesis --- scaling up --- pilot plant --- chalcopyrite compounds --- nanocrystals --- hydrothermal --- spin coating --- EIS --- conductivity --- lithium-ion batteries --- SnO2 --- nanoarray --- anode --- high-rate
Listing 1 - 7 of 7 |
Sort by
|