Narrow your search

Library

ULiège (9)

KU Leuven (8)

LUCA School of Arts (6)

Odisee (6)

Thomas More Kempen (6)

Thomas More Mechelen (6)

UCLL (6)

VIVES (6)

VUB (5)

ULB (3)

More...

Resource type

book (16)


Language

English (16)


Year
From To Submit

2022 (3)

2020 (3)

2019 (1)

2018 (1)

2016 (2)

More...
Listing 1 - 10 of 16 << page
of 2
>>
Sort by

Book
In Memoriam, Solomon Marcus
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book commemorates Solomon Marcus’s fifth death anniversary with a selection of articles in mathematics, theoretical computer science, and physics written by authors who work in Marcus’s research fields, some of whom have been influenced by his results and/or have collaborated with him.


Book
In Memoriam, Solomon Marcus
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book commemorates Solomon Marcus’s fifth death anniversary with a selection of articles in mathematics, theoretical computer science, and physics written by authors who work in Marcus’s research fields, some of whom have been influenced by his results and/or have collaborated with him.


Book
In Memoriam, Solomon Marcus
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book commemorates Solomon Marcus’s fifth death anniversary with a selection of articles in mathematics, theoretical computer science, and physics written by authors who work in Marcus’s research fields, some of whom have been influenced by his results and/or have collaborated with him.

Keywords

Information technology industries --- Computer science --- automata theory --- formal language theory --- bio-informatics --- recursive function theory --- evolutionary processor --- network of evolutionary processors --- network topology --- theory of computation --- computational models --- intrinsic perception --- Hausdorff dimension --- fractal --- computational complexity --- Turing machine --- oracle Turing machine --- shortest computations --- quasiperiod --- formal language --- asymptotic growth --- polynomial --- membrane computing --- computational complexity theory --- P vs. NP problem --- evolutional communication --- symport/antiport --- Kolmogorov complexity --- random strings --- extractors --- finite languages --- deterministic finite cover automata --- multiple entry automata --- automata with “do not care” symbols --- similarity relations --- process calculus --- communication patterns --- control structures --- hypergraph model --- P systems --- cP systems --- NP-complete --- NP-hard --- SAT --- logarithmic time complexity --- automata theory --- formal language theory --- bio-informatics --- recursive function theory --- evolutionary processor --- network of evolutionary processors --- network topology --- theory of computation --- computational models --- intrinsic perception --- Hausdorff dimension --- fractal --- computational complexity --- Turing machine --- oracle Turing machine --- shortest computations --- quasiperiod --- formal language --- asymptotic growth --- polynomial --- membrane computing --- computational complexity theory --- P vs. NP problem --- evolutional communication --- symport/antiport --- Kolmogorov complexity --- random strings --- extractors --- finite languages --- deterministic finite cover automata --- multiple entry automata --- automata with “do not care” symbols --- similarity relations --- process calculus --- communication patterns --- control structures --- hypergraph model --- P systems --- cP systems --- NP-complete --- NP-hard --- SAT --- logarithmic time complexity


Book
Advances and Novel Approaches in Discrete Optimization
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Discrete optimization is an important area of Applied Mathematics with a broad spectrum of applications in many fields. This book results from a Special Issue in the journal Mathematics entitled ‘Advances and Novel Approaches in Discrete Optimization’. It contains 17 articles covering a broad spectrum of subjects which have been selected from 43 submitted papers after a thorough refereeing process. Among other topics, it includes seven articles dealing with scheduling problems, e.g., online scheduling, batching, dual and inverse scheduling problems, or uncertain scheduling problems. Other subjects are graphs and applications, evacuation planning, the max-cut problem, capacitated lot-sizing, and packing algorithms.

Keywords

Research & information: general --- Mathematics & science --- forgotten index --- balaban index --- reclassified the zagreb indices --- ABC4 index --- GA5 index --- HDN3(m) --- THDN3(m) --- RHDN3(m) --- degree of vertex --- extended adjacency index --- scheduling with rejection --- machine non-availability --- operator non-availability --- dynamic programming --- FPTAS --- Transportation --- batching scheduling --- total weighted completion time --- unary NP-hard --- approximation algorithm --- bi-criteria scheduling --- online algorithm --- makespan --- maximum machine cost --- competitive ratio --- network optimization --- dynamic flow --- evacuation planning --- contraflow configuration --- partial lane reversals, algorithms and complexity --- logistic supports --- scheduling algorithm --- release-time --- due-date --- divisible numbers --- lateness --- bin packing --- time complexity --- batch scheduling --- linear deterioration --- job families --- Max-cut problem --- combinatorial optimization --- deep learning --- pointer network --- supervised learning --- reinforcement learning --- capacitated lot sizing --- mixed integer formulation --- retail --- inventory --- shortages --- graph --- join product --- crossing number --- cyclic permutation --- arithmetic mean --- combinatorial generation --- method --- algorithm --- AND/OR tree --- Euler-Catalan's triangle --- labeled Dyck path --- ranking algorithm --- unranking algorithm --- Harris hawks optimizer --- load frequency control --- sensitivity analysis --- smart grid --- particle swarm optimization --- genetic algorithm --- meta-heuristics --- packing --- irregular 3D objects --- quasi-phi-function s --- nonlinear optimization --- single-machine scheduling --- minimization of maximum penalty --- dual problem --- inverse problem --- branch and bound --- LNS --- numerical conversion --- RISC --- FPGA --- embedded systems --- scheduling --- job-shop --- makespan criterion --- uncertain processing times --- forgotten index --- balaban index --- reclassified the zagreb indices --- ABC4 index --- GA5 index --- HDN3(m) --- THDN3(m) --- RHDN3(m) --- degree of vertex --- extended adjacency index --- scheduling with rejection --- machine non-availability --- operator non-availability --- dynamic programming --- FPTAS --- Transportation --- batching scheduling --- total weighted completion time --- unary NP-hard --- approximation algorithm --- bi-criteria scheduling --- online algorithm --- makespan --- maximum machine cost --- competitive ratio --- network optimization --- dynamic flow --- evacuation planning --- contraflow configuration --- partial lane reversals, algorithms and complexity --- logistic supports --- scheduling algorithm --- release-time --- due-date --- divisible numbers --- lateness --- bin packing --- time complexity --- batch scheduling --- linear deterioration --- job families --- Max-cut problem --- combinatorial optimization --- deep learning --- pointer network --- supervised learning --- reinforcement learning --- capacitated lot sizing --- mixed integer formulation --- retail --- inventory --- shortages --- graph --- join product --- crossing number --- cyclic permutation --- arithmetic mean --- combinatorial generation --- method --- algorithm --- AND/OR tree --- Euler-Catalan's triangle --- labeled Dyck path --- ranking algorithm --- unranking algorithm --- Harris hawks optimizer --- load frequency control --- sensitivity analysis --- smart grid --- particle swarm optimization --- genetic algorithm --- meta-heuristics --- packing --- irregular 3D objects --- quasi-phi-function s --- nonlinear optimization --- single-machine scheduling --- minimization of maximum penalty --- dual problem --- inverse problem --- branch and bound --- LNS --- numerical conversion --- RISC --- FPGA --- embedded systems --- scheduling --- job-shop --- makespan criterion --- uncertain processing times

Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds (AM-134), Volume 134
Authors: ---
ISBN: 0691036411 0691036403 1400882532 9780691036403 9780691036410 Year: 2016 Volume: 134 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book offers a self-contained account of the 3-manifold invariants arising from the original Jones polynomial. These are the Witten-Reshetikhin-Turaev and the Turaev-Viro invariants. Starting from the Kauffman bracket model for the Jones polynomial and the diagrammatic Temperley-Lieb algebra, higher-order polynomial invariants of links are constructed and combined to form the 3-manifold invariants. The methods in this book are based on a recoupling theory for the Temperley-Lieb algebra. This recoupling theory is a q-deformation of the SU(2) spin networks of Roger Penrose. The recoupling theory is developed in a purely combinatorial and elementary manner. Calculations are based on a reformulation of the Kirillov-Reshetikhin shadow world, leading to expressions for all the invariants in terms of state summations on 2-cell complexes. Extensive tables of the invariants are included. Manifolds in these tables are recognized by surgery presentations and by means of 3-gems (graph encoded 3-manifolds) in an approach pioneered by Sostenes Lins. The appendices include information about gems, examples of distinct manifolds with the same invariants, and applications to the Turaev-Viro invariant and to the Crane-Yetter invariant of 4-manifolds.

Keywords

Drie-menigvuldigheden (Topologie) --- Knopentheorie --- Knot theory --- Noeuds [Theorie des ] --- Three-manifolds (Topology) --- Trois-variétés (Topologie) --- Knot theory. --- Algebraic topology --- Invariants --- Mathematics --- Invariants (Mathematics) --- Invariants. --- 3-manifolds (Topology) --- Manifolds, Three dimensional (Topology) --- Three-dimensional manifolds (Topology) --- Low-dimensional topology --- Topological manifolds --- Knots (Topology) --- 3-manifold. --- Addition. --- Algorithm. --- Ambient isotopy. --- Axiom. --- Backslash. --- Barycentric subdivision. --- Bijection. --- Bipartite graph. --- Borromean rings. --- Boundary parallel. --- Bracket polynomial. --- Calculation. --- Canonical form. --- Cartesian product. --- Cobordism. --- Coefficient. --- Combination. --- Commutator. --- Complex conjugate. --- Computation. --- Connected component (graph theory). --- Connected sum. --- Cubic graph. --- Diagram (category theory). --- Dimension. --- Disjoint sets. --- Disjoint union. --- Elaboration. --- Embedding. --- Equation. --- Equivalence class. --- Explicit formula. --- Explicit formulae (L-function). --- Factorial. --- Fundamental group. --- Graph (discrete mathematics). --- Graph embedding. --- Handlebody. --- Homeomorphism. --- Homology (mathematics). --- Identity element. --- Intersection form (4-manifold). --- Inverse function. --- Jones polynomial. --- Kirby calculus. --- Line segment. --- Linear independence. --- Matching (graph theory). --- Mathematical physics. --- Mathematical proof. --- Mathematics. --- Maxima and minima. --- Monograph. --- Natural number. --- Network theory. --- Notation. --- Numerical analysis. --- Orientability. --- Orthogonality. --- Pairing. --- Pairwise. --- Parametrization. --- Parity (mathematics). --- Partition function (mathematics). --- Permutation. --- Poincaré conjecture. --- Polyhedron. --- Quantum group. --- Quantum invariant. --- Recoupling. --- Recursion. --- Reidemeister move. --- Result. --- Roger Penrose. --- Root of unity. --- Scientific notation. --- Sequence. --- Significant figures. --- Simultaneous equations. --- Smoothing. --- Special case. --- Sphere. --- Spin network. --- Summation. --- Symmetric group. --- Tetrahedron. --- The Geometry Center. --- Theorem. --- Theory. --- Three-dimensional space (mathematics). --- Time complexity. --- Tubular neighborhood. --- Two-dimensional space. --- Vector field. --- Vector space. --- Vertex (graph theory). --- Winding number. --- Writhe.


Book
Distributed control of robotic networks : a mathematical approach to motion coordination algorithms
Authors: --- ---
ISBN: 168015897X 1282458205 1282935755 9786612458200 9786612935756 1400831474 0691141959 9780691141954 9781400831470 9781680158977 9781282458208 9781282935754 6612458208 6612935758 Year: 2009 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This self-contained introduction to the distributed control of robotic networks offers a distinctive blend of computer science and control theory. The book presents a broad set of tools for understanding coordination algorithms, determining their correctness, and assessing their complexity; and it analyzes various cooperative strategies for tasks such as consensus, rendezvous, connectivity maintenance, deployment, and boundary estimation. The unifying theme is a formal model for robotic networks that explicitly incorporates their communication, sensing, control, and processing capabilities--a model that in turn leads to a common formal language to describe and analyze coordination algorithms. Written for first- and second-year graduate students in control and robotics, the book will also be useful to researchers in control theory, robotics, distributed algorithms, and automata theory. The book provides explanations of the basic concepts and main results, as well as numerous examples and exercises. Self-contained exposition of graph-theoretic concepts, distributed algorithms, and complexity measures for processor networks with fixed interconnection topology and for robotic networks with position-dependent interconnection topology Detailed treatment of averaging and consensus algorithms interpreted as linear iterations on synchronous networks Introduction of geometric notions such as partitions, proximity graphs, and multicenter functions Detailed treatment of motion coordination algorithms for deployment, rendezvous, connectivity maintenance, and boundary estimation

Keywords

Robotics. --- Computer algorithms. --- Robots --- Automation --- Machine theory --- Robot control --- Robotics --- Algorithms --- Control systems. --- Computer algorithms --- Control systems --- 1-center problem. --- Adjacency matrix. --- Aggregate function. --- Algebraic connectivity. --- Algebraic topology (object). --- Algorithm. --- Analysis of algorithms. --- Approximation algorithm. --- Asynchronous system. --- Bellman–Ford algorithm. --- Bifurcation theory. --- Bounded set (topological vector space). --- Calculation. --- Cartesian product. --- Centroid. --- Chebyshev center. --- Circulant matrix. --- Circumscribed circle. --- Cluster analysis. --- Combinatorial optimization. --- Combinatorics. --- Communication complexity. --- Computation. --- Computational complexity theory. --- Computational geometry. --- Computational model. --- Computer simulation. --- Computer vision. --- Connected component (graph theory). --- Connectivity (graph theory). --- Consensus (computer science). --- Control function (econometrics). --- Differentiable function. --- Dijkstra's algorithm. --- Dimensional analysis. --- Directed acyclic graph. --- Directed graph. --- Discrete time and continuous time. --- Disk (mathematics). --- Distributed algorithm. --- Doubly stochastic matrix. --- Dynamical system. --- Eigenvalues and eigenvectors. --- Estimation. --- Euclidean space. --- Function composition. --- Hybrid system. --- Information theory. --- Initial condition. --- Instance (computer science). --- Invariance principle (linguistics). --- Invertible matrix. --- Iteration. --- Iterative method. --- Kinematics. --- Laplacian matrix. --- Leader election. --- Linear dynamical system. --- Linear interpolation. --- Linear programming. --- Lipschitz continuity. --- Lyapunov function. --- Markov chain. --- Mathematical induction. --- Mathematical optimization. --- Mobile robot. --- Motion planning. --- Multi-agent system. --- Network model. --- Network topology. --- Norm (mathematics). --- Numerical integration. --- Optimal control. --- Optimization problem. --- Parameter (computer programming). --- Partition of a set. --- Percolation theory. --- Permutation matrix. --- Polytope. --- Proportionality (mathematics). --- Quantifier (logic). --- Quantization (signal processing). --- Robustness (computer science). --- Scientific notation. --- Sensor. --- Set (mathematics). --- Simply connected space. --- Simulation. --- Simultaneous equations. --- State space. --- State variable. --- Stochastic matrix. --- Stochastic. --- Strongly connected component. --- Synchronous network. --- Theorem. --- Time complexity. --- Topology. --- Variable (mathematics). --- Vector field.

The Traveling Salesman Problem
Authors: --- ---
ISBN: 1283256118 9786613256119 1400841100 9781400841103 0691129932 9780691129938 9781283256117 Year: 2011 Publisher: Princeton, NJ

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book presents the latest findings on one of the most intensely investigated subjects in computational mathematics--the traveling salesman problem. It sounds simple enough: given a set of cities and the cost of travel between each pair of them, the problem challenges you to find the cheapest route by which to visit all the cities and return home to where you began. Though seemingly modest, this exercise has inspired studies by mathematicians, chemists, and physicists. Teachers use it in the classroom. It has practical applications in genetics, telecommunications, and neuroscience. The authors of this book are the same pioneers who for nearly two decades have led the investigation into the traveling salesman problem. They have derived solutions to almost eighty-six thousand cities, yet a general solution to the problem has yet to be discovered. Here they describe the method and computer code they used to solve a broad range of large-scale problems, and along the way they demonstrate the interplay of applied mathematics with increasingly powerful computing platforms. They also give the fascinating history of the problem--how it developed, and why it continues to intrigue us.

Keywords

Traveling salesman problem. --- TSP (Traveling salesman problem) --- Combinatorial optimization --- Graph theory --- Vehicle routing problem --- AT&T Labs. --- Accuracy and precision. --- Addition. --- Algorithm. --- Analysis of algorithms. --- Applied mathematics. --- Approximation algorithm. --- Approximation. --- Basic solution (linear programming). --- Best, worst and average case. --- Bifurcation theory. --- Big O notation. --- CPLEX. --- CPU time. --- Calculation. --- Chaos theory. --- Column generation. --- Combinatorial optimization. --- Computation. --- Computational resource. --- Computer. --- Connected component (graph theory). --- Connectivity (graph theory). --- Convex hull. --- Cutting-plane method. --- Delaunay triangulation. --- Determinism. --- Disjoint sets. --- Dynamic programming. --- Ear decomposition. --- Engineering. --- Enumeration. --- Equation. --- Estimation. --- Euclidean distance. --- Euclidean space. --- Family of sets. --- For loop. --- Genetic algorithm. --- George Dantzig. --- Georgia Institute of Technology. --- Greedy algorithm. --- Hamiltonian path. --- Hospitality. --- Hypergraph. --- Implementation. --- Instance (computer science). --- Institute. --- Integer. --- Iteration. --- Linear inequality. --- Linear programming. --- Mathematical optimization. --- Mathematics. --- Model of computation. --- Neuroscience. --- Notation. --- Operations research. --- Optimization problem. --- Order by. --- Pairwise. --- Parameter (computer programming). --- Parity (mathematics). --- Percentage. --- Polyhedron. --- Polytope. --- Pricing. --- Princeton University. --- Processing (programming language). --- Project. --- Quantity. --- Reduced cost. --- Requirement. --- Result. --- Rice University. --- Rutgers University. --- Scientific notation. --- Search algorithm. --- Search tree. --- Self-similarity. --- Simplex algorithm. --- Solution set. --- Solver. --- Source code. --- Special case. --- Stochastic. --- Subroutine. --- Subsequence. --- Subset. --- Summation. --- Test set. --- Theorem. --- Theory. --- Time complexity. --- Trade-off. --- Travelling salesman problem. --- Tree (data structure). --- Upper and lower bounds. --- Variable (computer science). --- Variable (mathematics).


Book
Elements of Mathematics : From Euclid to Gödel
Author:
ISBN: 1400880564 Year: 2016 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Elements of Mathematics takes readers on a fascinating tour that begins in elementary mathematics-but, as John Stillwell shows, this subject is not as elementary or straightforward as one might think. Not all topics that are part of today's elementary mathematics were always considered as such, and great mathematical advances and discoveries had to occur in order for certain subjects to become "elementary." Stillwell examines elementary mathematics from a distinctive twenty-first-century viewpoint and describes not only the beauty and scope of the discipline, but also its limits.From Gaussian integers to propositional logic, Stillwell delves into arithmetic, computation, algebra, geometry, calculus, combinatorics, probability, and logic. He discusses how each area ties into more advanced topics to build mathematics as a whole. Through a rich collection of basic principles, vivid examples, and interesting problems, Stillwell demonstrates that elementary mathematics becomes advanced with the intervention of infinity. Infinity has been observed throughout mathematical history, but the recent development of "reverse mathematics" confirms that infinity is essential for proving well-known theorems, and helps to determine the nature, contours, and borders of elementary mathematics.Elements of Mathematics gives readers, from high school students to professional mathematicians, the highlights of elementary mathematics and glimpses of the parts of math beyond its boundaries.

Keywords

Mathematics --- Math --- Science --- Study and teaching (Higher) --- Abstract algebra. --- Addition. --- Algebra. --- Algebraic equation. --- Algebraic number. --- Algorithm. --- Arbitrarily large. --- Arithmetic. --- Axiom. --- Binomial coefficient. --- Bolzano–Weierstrass theorem. --- Calculation. --- Cantor's diagonal argument. --- Church–Turing thesis. --- Closure (mathematics). --- Coefficient. --- Combination. --- Combinatorics. --- Commutative property. --- Complex number. --- Computable number. --- Computation. --- Constructible number. --- Continuous function (set theory). --- Continuous function. --- Continuum hypothesis. --- Dedekind cut. --- Dirichlet's approximation theorem. --- Divisibility rule. --- Elementary function. --- Elementary mathematics. --- Equation. --- Euclidean division. --- Euclidean geometry. --- Exponentiation. --- Extended Euclidean algorithm. --- Factorization. --- Fibonacci number. --- Floor and ceiling functions. --- Fundamental theorem of algebra. --- Fundamental theorem. --- Gaussian integer. --- Geometric series. --- Geometry. --- Gödel's incompleteness theorems. --- Halting problem. --- Infimum and supremum. --- Integer factorization. --- Integer. --- Least-upper-bound property. --- Line segment. --- Linear algebra. --- Logic. --- Mathematical induction. --- Mathematician. --- Mathematics. --- Method of exhaustion. --- Modular arithmetic. --- Natural number. --- Non-Euclidean geometry. --- Number theory. --- Pascal's triangle. --- Peano axioms. --- Pigeonhole principle. --- Polynomial. --- Predicate logic. --- Prime factor. --- Prime number. --- Probability theory. --- Probability. --- Projective line. --- Pure mathematics. --- Pythagorean theorem. --- Ramsey theory. --- Ramsey's theorem. --- Rational number. --- Real number. --- Real projective line. --- Rectangle. --- Reverse mathematics. --- Robinson arithmetic. --- Scientific notation. --- Series (mathematics). --- Set theory. --- Sign (mathematics). --- Significant figures. --- Special case. --- Sperner's lemma. --- Subset. --- Successor function. --- Summation. --- Symbolic computation. --- Theorem. --- Time complexity. --- Turing machine. --- Variable (mathematics). --- Vector space. --- Word problem (mathematics). --- Word problem for groups. --- Zermelo–Fraenkel set theory.


Book
Auxiliary Signal Design for Failure Detection
Authors: ---
ISBN: 1680159283 1400880041 Year: 2015 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Many industries, such as transportation and manufacturing, use control systems to insure that parameters such as temperature or altitude behave in a desirable way over time. For example, pilots need assurance that the plane they are flying will maintain a particular heading. An integral part of control systems is a mechanism for failure detection to insure safety and reliability. This book offers an alternative failure detection approach that addresses two of the fundamental problems in the safe and efficient operation of modern control systems: failure detection--deciding when a failure has occurred--and model identification--deciding which kind of failure has occurred. Much of the work in both categories has been based on statistical methods and under the assumption that a given system was monitored passively. Campbell and Nikoukhah's book proposes an "active" multimodel approach. It calls for applying an auxiliary signal that will affect the output so that it can be used to easily determine if there has been a failure and what type of failure it is. This auxiliary signal must be kept small, and often brief in duration, in order not to interfere with system performance and to ensure timely detection of the failure. The approach is robust and uses tools from robust control theory. Unlike some approaches, it is applicable to complex systems. The authors present the theory in a rigorous and intuitive manner and provide practical algorithms for implementation of the procedures.

Keywords

System failures (Engineering) --- Fault location (Engineering) --- Signal processing. --- Processing, Signal --- Information measurement --- Signal theory (Telecommunication) --- Location of system faults --- System fault location (Engineering) --- Dynamic testing --- Failure of engineering systems --- Reliability (Engineering) --- Systems engineering --- A priori estimate. --- AIXI. --- Abuse of notation. --- Accuracy and precision. --- Additive white Gaussian noise. --- Algorithm. --- Approximation. --- Asymptotic analysis. --- Bisection method. --- Boundary value problem. --- Calculation. --- Catastrophic failure. --- Combination. --- Computation. --- Condition number. --- Continuous function. --- Control theory. --- Control variable. --- Decision theory. --- Derivative. --- Detection. --- Deterministic system. --- Diagram (category theory). --- Differential equation. --- Discrete time and continuous time. --- Discretization. --- Dynamic programming. --- Engineering design process. --- Engineering. --- Equation. --- Error message. --- Estimation theory. --- Estimation. --- Finite difference. --- Gain scheduling. --- Inequality (mathematics). --- Initial condition. --- Integrator. --- Invertible matrix. --- Laplace transform. --- Least squares. --- Likelihood function. --- Likelihood-ratio test. --- Limit point. --- Linear programming. --- Linearization. --- Mathematical optimization. --- Mathematical problem. --- Maxima and minima. --- Measurement. --- Method of lines. --- Monotonic function. --- Noise power. --- Nonlinear control. --- Nonlinear programming. --- Norm (mathematics). --- Numerical analysis. --- Numerical control. --- Numerical integration. --- Observational error. --- Open problem. --- Optimal control. --- Optimization problem. --- Parameter. --- Partial differential equation. --- Piecewise. --- Pointwise. --- Prediction. --- Probability. --- Random variable. --- Realizability. --- Remedial action. --- Requirement. --- Rewriting. --- Riccati equation. --- Runge–Kutta methods. --- Sampled data systems. --- Sampling (signal processing). --- Scientific notation. --- Scilab. --- Shift operator. --- Signal (electrical engineering). --- Sine wave. --- Solver. --- Special case. --- Stochastic Modeling. --- Stochastic calculus. --- Stochastic interpretation. --- Stochastic process. --- Stochastic. --- Theorem. --- Time complexity. --- Time-invariant system. --- Trade-off. --- Transfer function. --- Transient response. --- Uncertainty. --- Utilization. --- Variable (mathematics). --- Variance.


Book
The Discrete Charm of the Machine
Author:
ISBN: 0691184178 9780691184173 0691179433 9780691179438 Year: 2019 Publisher: Princeton, NJ

Loading...
Export citation

Choose an application

Bookmark

Abstract

"A few short decades ago, we were informed by the smooth signals of analog television and radio; we communicated using our analog telephones; and we even computed with analog computers. Today our world is digital, built with zeros and ones. Why did this revolution occur? The Discrete Charm of the Machine explains, in an engaging and accessible manner, the varied physical and logical reasons behind this radical transformation. The spark of individual genius shines through this story of innovation: the stored program of Jacquard’s loom; Charles Babbage’s logical branching; Alan Turing’s brilliant abstraction of the discrete machine; Harry Nyquist’s foundation for digital signal processing; Claude Shannon’s breakthrough insights into the meaning of information and bandwidth; and Richard Feynman’s prescient proposals for nanotechnology and quantum computing. Ken Steiglitz follows the progression of these ideas in the building of our digital world, from the internet and artificial intelligence to the edge of the unknown. Are questions like the famous traveling salesman problem truly beyond the reach of ordinary digital computers? Can quantum computers transcend these barriers? Does a mysterious magical power reside in the analog mechanisms of the brain? Steiglitz concludes by confronting the moral and aesthetic questions raised by the development of artificial intelligence and autonomous robots. The Discrete Charm of the Machine examines why our information technology, the lifeblood of our civilization, became digital, and challenges us to think about where its future trajectory may lead." -- Publisher's description.

Keywords

Digital communications. --- Technological innovations. --- Breakthroughs, Technological --- Innovations, Industrial --- Innovations, Technological --- Technical innovations --- Technological breakthroughs --- Technological change --- Creative ability in technology --- Inventions --- Domestication of technology --- Innovation relay centers --- Research, Industrial --- Technology transfer --- Communications, Digital --- Digital transmission --- Pulse communication --- Digital electronics --- Pulse techniques (Electronics) --- Telecommunication --- Digital media --- Signal processing --- Digital techniques --- Digital communications --- Technological innovations --- AND gate. --- Alan Turing. --- Algorithm. --- Analog computer. --- Analog device. --- Analog signal. --- Analog-to-digital converter. --- Artificial neural network. --- Autonomous robot. --- Bell's theorem. --- Calculation. --- Charles Babbage. --- Church–Turing thesis. --- Classical physics. --- Claude Shannon. --- Compact disc. --- Computation. --- Computer music. --- Computer program. --- Computer science. --- Computer scientist. --- Computer. --- Computing. --- Data transmission. --- Detection. --- Difference engine. --- Differential equation. --- Digital data. --- Digital electronics. --- Digital signal processing. --- Digital signal. --- Diode. --- Electrical network. --- Electricity. --- Electromagnetic radiation. --- Electronics. --- Exponential growth. --- Field-effect transistor. --- Fourier analysis. --- High frequency. --- Information theory. --- Instance (computer science). --- Instruction set. --- Integrated circuit. --- Integrator. --- Isaac Asimov. --- Johnson–Nyquist noise. --- Laptop. --- Laughter. --- Logarithm. --- Low frequency. --- Mathematician. --- Mathematics. --- Measurement. --- Microphone. --- Microphotograph. --- Microscope. --- Molecule. --- Moore's law. --- NP-completeness. --- Optical fiber. --- P versus NP problem. --- Patch panel. --- Photograph. --- Photon. --- Physicist. --- Probability. --- Processing (programming language). --- Proportionality (mathematics). --- Punched card. --- Quantity. --- Quantum computing. --- Quantum mechanics. --- Radio wave. --- Resistor. --- Result. --- Retransmission (data networks). --- Richard Feynman. --- Scientist. --- Semiconductor. --- Shot noise. --- Silicon. --- Simulation. --- Solid-state electronics. --- Sound recording and reproduction. --- Standardization. --- Technology. --- Television. --- Theorem. --- Theoretical computer science. --- Time complexity. --- Transistor. --- Turing machine. --- Uncertainty. --- Vacuum tube. --- Vacuum. --- Video. --- Wafer (electronics). --- Wave–particle duality. --- Your Computer (British magazine).

Listing 1 - 10 of 16 << page
of 2
>>
Sort by