Listing 1 - 4 of 4 |
Sort by
|
Choose an application
In recent years, power electronics have been intensely contributing to the development and evolution of new structures for the processing of energy. They can be used in a wide range of applications ranging from power systems and electrical machines to electric vehicles and robot arm drives. In conjunction with the evolution of microprocessors and advanced control theories, power electronics are playing an increasingly essential role in our society. Thus, in order to cope with the obstacles lying ahead, this book presents a collection of original studies and modeling methods which were developed and published in the field of electrical energy conditioning and control by using circuits and electronic devices, with an emphasis on power applications and industrial control. Researchers have contributed 19 selected and peer-reviewed papers covering a wide range of topics by addressing a wide variety of themes, such as motor drives, AC–DC and DC–DC converters, multilevel converters, varistors, and electromagnetic compatibility, among others. The overall result is a book that represents a cohesive collection of inter-/multidisciplinary works regarding the industrial applications of power electronics.
History of engineering & technology --- Energy industries & utilities --- failure mode --- impulse current --- microstructure --- multiple lightning --- ZnO varistors --- multilevel matrix converter --- rotating voltage space vector --- common move voltage --- space vector pulse width modulation --- venturini control method --- electric vehicle --- electromagnetic compatibility --- electromagnetic topology --- radiated emission --- nonlinear effects --- three-level neutral-point clamped inverter --- induction motor --- speed observation --- compensation --- impedance-source inverter --- shoot-through --- dc-dc converter --- dc-ac converter --- DC-DC power converter --- Takagi–Sugeno fuzzy system --- hierarchical binary tree --- circuit breaker --- fault current limiter --- current source circuit --- voltage clamping --- constant current control --- frequency domain electromagnetic --- weighted factor --- model predictive flux control --- interior permanent magnet synchronous --- discrete space vector modulation --- microgrid protection --- power quality --- fault current --- H bridge --- look-up table --- interpolation error --- PMSM drive --- circulating current control --- modular multilevel converter (MMC) --- static synchronous compensator (STATCOM) --- asymmetric --- capacitors --- multilevel inverter --- power electronics --- self-charging --- virtual DC links --- full-bridge converter --- phase shift modulation --- supercapacitors --- isolated DC-DC bidirectional converter --- electrostatic discharge (ESD) --- elliptical-cylinder type --- human-body model (HBM) --- n-channel lateral-diffused MOSFET (nLDMOS) --- super-junction (SJ) --- ultra high-voltage (UHV) --- aging characteristics --- energy absorption --- boost inverter --- single source --- low components --- PMBLDC motor --- fuzzy-logic controller design --- common mode inverters --- photovoltaic --- leakage current elimination --- pulse width modulation --- power converters --- electrical machines --- power grid stability analysis --- inverters --- power supplies --- multilevel converters --- motor drives --- power semiconductor devices --- Tara / Neutral Junction (Central NT SF53-06)
Choose an application
In recent years, power electronics have been intensely contributing to the development and evolution of new structures for the processing of energy. They can be used in a wide range of applications ranging from power systems and electrical machines to electric vehicles and robot arm drives. In conjunction with the evolution of microprocessors and advanced control theories, power electronics are playing an increasingly essential role in our society. Thus, in order to cope with the obstacles lying ahead, this book presents a collection of original studies and modeling methods which were developed and published in the field of electrical energy conditioning and control by using circuits and electronic devices, with an emphasis on power applications and industrial control. Researchers have contributed 19 selected and peer-reviewed papers covering a wide range of topics by addressing a wide variety of themes, such as motor drives, AC–DC and DC–DC converters, multilevel converters, varistors, and electromagnetic compatibility, among others. The overall result is a book that represents a cohesive collection of inter-/multidisciplinary works regarding the industrial applications of power electronics.
failure mode --- impulse current --- microstructure --- multiple lightning --- ZnO varistors --- multilevel matrix converter --- rotating voltage space vector --- common move voltage --- space vector pulse width modulation --- venturini control method --- electric vehicle --- electromagnetic compatibility --- electromagnetic topology --- radiated emission --- nonlinear effects --- three-level neutral-point clamped inverter --- induction motor --- speed observation --- compensation --- impedance-source inverter --- shoot-through --- dc-dc converter --- dc-ac converter --- DC-DC power converter --- Takagi–Sugeno fuzzy system --- hierarchical binary tree --- circuit breaker --- fault current limiter --- current source circuit --- voltage clamping --- constant current control --- frequency domain electromagnetic --- weighted factor --- model predictive flux control --- interior permanent magnet synchronous --- discrete space vector modulation --- microgrid protection --- power quality --- fault current --- H bridge --- look-up table --- interpolation error --- PMSM drive --- circulating current control --- modular multilevel converter (MMC) --- static synchronous compensator (STATCOM) --- asymmetric --- capacitors --- multilevel inverter --- power electronics --- self-charging --- virtual DC links --- full-bridge converter --- phase shift modulation --- supercapacitors --- isolated DC-DC bidirectional converter --- electrostatic discharge (ESD) --- elliptical-cylinder type --- human-body model (HBM) --- n-channel lateral-diffused MOSFET (nLDMOS) --- super-junction (SJ) --- ultra high-voltage (UHV) --- aging characteristics --- energy absorption --- boost inverter --- single source --- low components --- PMBLDC motor --- fuzzy-logic controller design --- common mode inverters --- photovoltaic --- leakage current elimination --- pulse width modulation --- power converters --- electrical machines --- power grid stability analysis --- inverters --- power supplies --- multilevel converters --- motor drives --- power semiconductor devices --- Tara / Neutral Junction (Central NT SF53-06)
Choose an application
In recent years, power electronics have been intensely contributing to the development and evolution of new structures for the processing of energy. They can be used in a wide range of applications ranging from power systems and electrical machines to electric vehicles and robot arm drives. In conjunction with the evolution of microprocessors and advanced control theories, power electronics are playing an increasingly essential role in our society. Thus, in order to cope with the obstacles lying ahead, this book presents a collection of original studies and modeling methods which were developed and published in the field of electrical energy conditioning and control by using circuits and electronic devices, with an emphasis on power applications and industrial control. Researchers have contributed 19 selected and peer-reviewed papers covering a wide range of topics by addressing a wide variety of themes, such as motor drives, AC–DC and DC–DC converters, multilevel converters, varistors, and electromagnetic compatibility, among others. The overall result is a book that represents a cohesive collection of inter-/multidisciplinary works regarding the industrial applications of power electronics.
History of engineering & technology --- Energy industries & utilities --- failure mode --- impulse current --- microstructure --- multiple lightning --- ZnO varistors --- multilevel matrix converter --- rotating voltage space vector --- common move voltage --- space vector pulse width modulation --- venturini control method --- electric vehicle --- electromagnetic compatibility --- electromagnetic topology --- radiated emission --- nonlinear effects --- three-level neutral-point clamped inverter --- induction motor --- speed observation --- compensation --- impedance-source inverter --- shoot-through --- dc-dc converter --- dc-ac converter --- DC-DC power converter --- Takagi–Sugeno fuzzy system --- hierarchical binary tree --- circuit breaker --- fault current limiter --- current source circuit --- voltage clamping --- constant current control --- frequency domain electromagnetic --- weighted factor --- model predictive flux control --- interior permanent magnet synchronous --- discrete space vector modulation --- microgrid protection --- power quality --- fault current --- H bridge --- look-up table --- interpolation error --- PMSM drive --- circulating current control --- modular multilevel converter (MMC) --- static synchronous compensator (STATCOM) --- asymmetric --- capacitors --- multilevel inverter --- power electronics --- self-charging --- virtual DC links --- full-bridge converter --- phase shift modulation --- supercapacitors --- isolated DC-DC bidirectional converter --- electrostatic discharge (ESD) --- elliptical-cylinder type --- human-body model (HBM) --- n-channel lateral-diffused MOSFET (nLDMOS) --- super-junction (SJ) --- ultra high-voltage (UHV) --- aging characteristics --- energy absorption --- boost inverter --- single source --- low components --- PMBLDC motor --- fuzzy-logic controller design --- common mode inverters --- photovoltaic --- leakage current elimination --- pulse width modulation --- power converters --- electrical machines --- power grid stability analysis --- inverters --- power supplies --- multilevel converters --- motor drives --- power semiconductor devices --- Tara / Neutral Junction (Central NT SF53-06)
Choose an application
This book is a collection of scientific papers concerning multilevel inverters examined from different points of view. Many applications are considered, such as renewable energy interface, power conditioning systems, electric drives, and chargers for electric vehicles. Different topologies have been examined in both new configurations and well-established structures, introducing novel and particular modulation strategies, and examining the effect of modulation techniques on voltage and current harmonics and the total harmonic distortion.
total harmonic distortion (THD) --- imperialist competitive algorithm --- fault detection --- automatic current balance --- small signal modeling --- phase-shifted PWM --- voltage balance control --- parasitic switching states --- multi-terminal DC network (MTDC) --- DC-link capacitor voltage balancing --- high efficiency drive --- modular multilevel converters --- DC-link voltage balancing --- power factor correction --- selected harmonic elimination --- Continuous Wavelet Transform --- power flow analysis --- T-type inverter --- electrical drives --- modular multilevel converter (MMC) --- computational cost --- fault location --- voltage imbalance --- DC-link capacitor design --- multilevel active-clamped converter --- dc-link capacitor voltage balance --- voltage ripple --- commutation --- model predictive control (MPC) --- voltage fluctuation --- multi-motor drive --- Balance of capacitor voltage --- on-board battery charger --- single-phase three-level NPC converter --- Suppression of CMV --- redundant switching combination --- ACTPSS --- model predictive control --- three-loop --- finite control set model predictive control --- current estimation --- five-level --- fault-tolerant control --- offset voltage injection --- harmonic component --- current unmeasurable areas --- LC filter --- computational burden --- interleaved buck --- three-level converter --- IGBT short-circuit --- SVPWM --- harmonic --- DC side fault blocking --- three-phase to single-phase cascaded converter --- single shunt resistor --- buck-chopper --- power factor --- modulation techniques --- modular multilevel converters (MMC) --- permanent magnet synchronous generator --- sorting networks --- alternating current (AC) motor drive --- space vector pulse width modulation (SVPWM) --- open end winding motor --- minimum voltage injection (MVI) method --- transmission line --- shift method --- genetic algorithm --- electric vehicle --- active filter --- NPC/H Bridge --- battery energy storage system (BESS) --- digital controller --- neutral-point-clamped (NPC) inverter --- motor drive --- hybrid modulated model predictive control --- level-shifted PWM --- optimal output voltage level --- Phase Disposition PWM --- open-end winding configuration --- modular multilevel converter --- multilevel power converters --- simplified PWM strategy --- MMC-MTDC --- tolerance for battery power unbalance --- three-level neutral point clamped inverter (NPCI) --- real time simulator --- harmonic mitigation --- reverse prediction --- multilevel inverters --- field-programmable gate array --- current reconstruction method --- digital signal processors (DSP) --- three-level boost --- multilevel converter --- improved PQ algorithm --- low-harmonic DC ice-melting device --- PV-simulator --- total harmonic distortion --- voltage balancing --- Sub-module (SM) fault --- DC–DC conversion --- smart grid --- Cascaded H-bridge multilevel inverter (CHBMI) --- dynamic reactive --- field-oriented control --- capacitor voltage balancing --- energy saving --- high reliability applications --- three-phase inverter --- substation’s voltage stability --- three-level boost DC-DC converter --- power quality --- T-type converter --- voltage source inverter --- state-of-charge (SOC) balancing control --- multi-point DC control --- predictive control --- Differential Comparison Low-Voltage Detection Method (DCLVDM)
Listing 1 - 4 of 4 |
Sort by
|