Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULiège (2)

VIVES (2)

Vlaams Parlement (2)

More...

Resource type

book (3)


Language

English (3)


Year
From To Submit

2022 (2)

2020 (1)

Listing 1 - 3 of 3
Sort by

Book
Advances and Trends in Mathematical Modelling, Control and Identification of Vibrating Systems
Authors: --- --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book introduces novel results on mathematical modelling, parameter identification, and automatic control for a wide range of applications of mechanical, electric, and mechatronic systems, where undesirable oscillations or vibrations are manifested. The six chapters of the book written by experts from international scientific community cover a wide range of interesting research topics related to: algebraic identification of rotordynamic parameters in rotor-bearing system using finite element models; model predictive control for active automotive suspension systems by means of hydraulic actuators; model-free data-driven-based control for a Voltage Source Converter-based Static Synchronous Compensator to improve the dynamic power grid performance under transient scenarios; an exact elasto-dynamics theory for bending vibrations for a class of flexible structures; motion profile tracking control and vibrating disturbance suppression for quadrotor aerial vehicles using artificial neural networks and particle swarm optimization; and multiple adaptive controllers based on B-Spline artificial neural networks for regulation and attenuation of low frequency oscillations for large-scale power systems. The book is addressed for both academic and industrial researchers and practitioners, as well as for postgraduate and undergraduate engineering students and other experts in a wide variety of disciplines seeking to know more about the advances and trends in mathematical modelling, control and identification of engineering systems in which undesirable oscillations or vibrations could be presented during their operation.

Keywords

Technology: general issues --- History of engineering & technology --- B-spline neural networks --- adaptive power system control --- coordinated multiple controllers --- StatCom --- exact plate theory --- thick plate --- bending vibration --- partial differential operator theory --- gauge condition --- data-driven control --- reactive power compensation --- STATCOM --- voltage control --- voltage source converter --- quadrotor UAV --- artificial neural networks --- robust control --- Taylor series --- B-splines --- particle swarm optimization --- active suspension --- model predictive control --- linear parameter varying --- ellipsoidal set --- attraction sets --- quadratic stability --- algebraic identification --- rotor-bearing system --- finite element model --- rotordynamic coefficients --- B-spline neural networks --- adaptive power system control --- coordinated multiple controllers --- StatCom --- exact plate theory --- thick plate --- bending vibration --- partial differential operator theory --- gauge condition --- data-driven control --- reactive power compensation --- STATCOM --- voltage control --- voltage source converter --- quadrotor UAV --- artificial neural networks --- robust control --- Taylor series --- B-splines --- particle swarm optimization --- active suspension --- model predictive control --- linear parameter varying --- ellipsoidal set --- attraction sets --- quadratic stability --- algebraic identification --- rotor-bearing system --- finite element model --- rotordynamic coefficients


Book
Advances and Trends in Mathematical Modelling, Control and Identification of Vibrating Systems
Authors: --- --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book introduces novel results on mathematical modelling, parameter identification, and automatic control for a wide range of applications of mechanical, electric, and mechatronic systems, where undesirable oscillations or vibrations are manifested. The six chapters of the book written by experts from international scientific community cover a wide range of interesting research topics related to: algebraic identification of rotordynamic parameters in rotor-bearing system using finite element models; model predictive control for active automotive suspension systems by means of hydraulic actuators; model-free data-driven-based control for a Voltage Source Converter-based Static Synchronous Compensator to improve the dynamic power grid performance under transient scenarios; an exact elasto-dynamics theory for bending vibrations for a class of flexible structures; motion profile tracking control and vibrating disturbance suppression for quadrotor aerial vehicles using artificial neural networks and particle swarm optimization; and multiple adaptive controllers based on B-Spline artificial neural networks for regulation and attenuation of low frequency oscillations for large-scale power systems. The book is addressed for both academic and industrial researchers and practitioners, as well as for postgraduate and undergraduate engineering students and other experts in a wide variety of disciplines seeking to know more about the advances and trends in mathematical modelling, control and identification of engineering systems in which undesirable oscillations or vibrations could be presented during their operation.


Book
Science, Characterization and Technology of Joining and Welding
Author:
ISBN: 3039289985 3039289977 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

As the Guest Editor of this Special Issue entitled ""Science, Characterization, and Technology of Joining and Welding"" of Metals, I am pleased to have this book published by MDPI. Joining, including welding, soldering, brazing, and assembly, is an essential requirement in manufacturing processes and is classified as a secondary manufacturing process. This Special Issue of Metals includes technical and review papers on, but not limited to, different aspects of joining and welding, including welding technologies (i.e., fusion-based welding and solid-state welding), characterization, metallurgy and materials science, quality control, and design and numerical simulation. This Special Issue also includes the joining of different materials, including metal and non-metals (polymers and composites), including 17 peer-reviewed papers from several researchers all around the globe (China, Germany, Brazil, South Koria, Slovakia, USA, Taiwan, Canada, and India). As of this date (April 2020), the papers in this Special Issue have been cited 47 times by other researchers, which I think is an eminent number and shows the high quality of the published papers in this Issue. This Special Issue includes a large diversity of various subjects in the field of joining: laser welding, friction stir welding, diffusion bonding, multipass welding, rotary friction-welding, friction bit joining, adhesive bonding, weldbonding, simulation and experimentation, metal/FRP joints, welding simulation, plasma–TIG coupled arc welding, liquation cracking, soldering, resin bonding, microstructural characteristics, brazing, and friction stir butt and scarf welding. I would like to sincerely thank all the researchers who contributed to this Special Issue for their high-quality research. I also would like to acknowledge Mr. Toliver Guo, Senior Assistant Editor at MDPI, who continuously and tirelessly contributed toward this Special Issue by assisting me with inviting the authors and the follow ups. I think this Special Issue will enhance our knowledge and understanding in the field of joining and assembly. I would like to dedicate this book to my wife, Mehrnoosh, for her continued support and encouragement.

Keywords

microstructure --- phased array ultrasonic --- thermophysical property --- FRP --- simulation --- eutectoid --- tint etching --- TAN alloy --- dissimilar material joining --- thermal compression bonding --- HAZ cracking --- welding thermal cycles --- IN738 superalloy --- carbide dissolution --- solder --- friction bit joining --- weld bonding --- interfacial microstructure --- adhesive thermos-mechanical property --- API 5L X80 steel --- scarf joint --- thermal spraying --- pores --- Cr-Mo steel --- welding --- hot pressing --- local brittle zone --- electrical properties --- Ti2AlNb alloy --- tool pin profiles --- adhesive bonding --- mechanical properties --- carbon fiber-reinforced polymer --- surface structuring --- m23c6 --- Zn-coated low carbon microalloyed steels --- flux-less soldering --- dissimilar joints --- energy-input --- medium thick plate model --- design of experiments --- oxide layer --- mechanical interlocking --- rotary friction-welding --- 22MnB5 --- ultrasonic bonding --- titanium --- anisotropy --- coupled arc --- heat-affected zone --- aluminum --- plasma-TIG --- joint mechanical properties --- hybrid joining --- microconstituent --- dual-phase steel --- high-crystalline content zirconia --- flex-on-board assembly --- active monomers --- butt joint --- copper --- clad filler foil --- SA213-T23 --- arc profile --- numerical simulation --- tailor welded blanks --- ceramics --- vacuum brazing --- coating --- longitudinal wave --- direct diffusion bonding --- metallurgy --- pressure distribution --- flow stress --- SnBi58 solder joint morphology --- adhesion --- dissimilar weldments --- laser welding --- distributed point heat sources model --- mechanical strength --- taguchi design --- bonding strength --- friction stir welding

Listing 1 - 3 of 3
Sort by