Listing 1 - 8 of 8 |
Sort by
|
Choose an application
Carbon-based nanomaterials such as carbon nanotubes, graphene and its derivatives, nanodiamond, fullerenes, and other nano-sized carbon allotropes have recently attracted a lot of attention among the scientific community due to their enormous potential for a wide number of applications arising from their large specific surface area, high electrical and thermal conductivity, and good mechanical properties. The combination of carbon nanomaterials with polymers leads to new nanocomposites with improved structural and functional properties due to synergistic effects. In particular, the properties of carbon-based polymer nanocomposites can be easily tuned by carefully controlling the carbon nanomaterial synthesis route and additionally the versatile synergistic interactions amongst the nanomaterials and polymers. This book provides selected examples of the most recent advances regarding carbon nanomaterial-reinforced polymeric composites. It includes the most representative types of polymeric matrices and covers aspects of new processing techniques, novel surface modifications of carbon nanomaterials and their applications in diverse fields, in particular in electronics and energy storage.
multi walled carbon nanotubes --- polyacrylonitrile --- nascent fiber --- thermal properties --- morphological structure --- nanocomposites --- graphene --- melt processing --- mechanical properties --- electrical conductivity --- electrostatic spraying --- multi-walled carbon nanotubes --- waterborne polyurethane coating --- dispersity --- surface hardness --- wear rate --- friction coefficient --- in-mold decoration injection molding --- microcellular injection molding --- surface quality --- warpage --- multiwalled carbon nanotube --- hyaluronic acid --- microfibers --- wet-spinning --- microstructures --- tensile properties --- Ag --- CNT --- flexible supercapacitor electrode --- polymer conductive film --- cellulose acetate membrane --- PANI --- graphene oxide --- hexamethylene diisocyanate --- nanocomposite --- thermal stability --- polydiphenylamine-2-carboxylic acid --- single-walled carbon nanotubes --- conjugated polymers --- in situ oxidative polymerization --- hybrid nanocomposites --- polypropylene --- carbon nanotube --- titanium dioxide --- reduced graphene oxide --- polyurethane foam --- flexible electronics --- pressure sensing --- polyethyleneimine --- thermoelectric properties --- carrier type --- Paal-Knorr reaction --- polyketone --- carbon nanotubes --- Diels-Alder --- click-chemistry --- hydrogen bonding --- self-healing --- re-workability --- recycling --- Joule heating --- flexible electrode --- cross-linked acrylamide/alginate --- tensile strength --- impedance spectroscopy --- polymer electrolyte --- Li-ion micro-batteries --- flexible anode --- pre-lithiation --- carbon-based polymer nanocomposite --- energy storage --- fuel cell --- electrochemical devices --- n/a
Choose an application
Carbon-based nanomaterials such as carbon nanotubes, graphene and its derivatives, nanodiamond, fullerenes, and other nano-sized carbon allotropes have recently attracted a lot of attention among the scientific community due to their enormous potential for a wide number of applications arising from their large specific surface area, high electrical and thermal conductivity, and good mechanical properties. The combination of carbon nanomaterials with polymers leads to new nanocomposites with improved structural and functional properties due to synergistic effects. In particular, the properties of carbon-based polymer nanocomposites can be easily tuned by carefully controlling the carbon nanomaterial synthesis route and additionally the versatile synergistic interactions amongst the nanomaterials and polymers. This book provides selected examples of the most recent advances regarding carbon nanomaterial-reinforced polymeric composites. It includes the most representative types of polymeric matrices and covers aspects of new processing techniques, novel surface modifications of carbon nanomaterials and their applications in diverse fields, in particular in electronics and energy storage.
Technology: general issues --- multi walled carbon nanotubes --- polyacrylonitrile --- nascent fiber --- thermal properties --- morphological structure --- nanocomposites --- graphene --- melt processing --- mechanical properties --- electrical conductivity --- electrostatic spraying --- multi-walled carbon nanotubes --- waterborne polyurethane coating --- dispersity --- surface hardness --- wear rate --- friction coefficient --- in-mold decoration injection molding --- microcellular injection molding --- surface quality --- warpage --- multiwalled carbon nanotube --- hyaluronic acid --- microfibers --- wet-spinning --- microstructures --- tensile properties --- Ag --- CNT --- flexible supercapacitor electrode --- polymer conductive film --- cellulose acetate membrane --- PANI --- graphene oxide --- hexamethylene diisocyanate --- nanocomposite --- thermal stability --- polydiphenylamine-2-carboxylic acid --- single-walled carbon nanotubes --- conjugated polymers --- in situ oxidative polymerization --- hybrid nanocomposites --- polypropylene --- carbon nanotube --- titanium dioxide --- reduced graphene oxide --- polyurethane foam --- flexible electronics --- pressure sensing --- polyethyleneimine --- thermoelectric properties --- carrier type --- Paal-Knorr reaction --- polyketone --- carbon nanotubes --- Diels-Alder --- click-chemistry --- hydrogen bonding --- self-healing --- re-workability --- recycling --- Joule heating --- flexible electrode --- cross-linked acrylamide/alginate --- tensile strength --- impedance spectroscopy --- polymer electrolyte --- Li-ion micro-batteries --- flexible anode --- pre-lithiation --- carbon-based polymer nanocomposite --- energy storage --- fuel cell --- electrochemical devices --- multi walled carbon nanotubes --- polyacrylonitrile --- nascent fiber --- thermal properties --- morphological structure --- nanocomposites --- graphene --- melt processing --- mechanical properties --- electrical conductivity --- electrostatic spraying --- multi-walled carbon nanotubes --- waterborne polyurethane coating --- dispersity --- surface hardness --- wear rate --- friction coefficient --- in-mold decoration injection molding --- microcellular injection molding --- surface quality --- warpage --- multiwalled carbon nanotube --- hyaluronic acid --- microfibers --- wet-spinning --- microstructures --- tensile properties --- Ag --- CNT --- flexible supercapacitor electrode --- polymer conductive film --- cellulose acetate membrane --- PANI --- graphene oxide --- hexamethylene diisocyanate --- nanocomposite --- thermal stability --- polydiphenylamine-2-carboxylic acid --- single-walled carbon nanotubes --- conjugated polymers --- in situ oxidative polymerization --- hybrid nanocomposites --- polypropylene --- carbon nanotube --- titanium dioxide --- reduced graphene oxide --- polyurethane foam --- flexible electronics --- pressure sensing --- polyethyleneimine --- thermoelectric properties --- carrier type --- Paal-Knorr reaction --- polyketone --- carbon nanotubes --- Diels-Alder --- click-chemistry --- hydrogen bonding --- self-healing --- re-workability --- recycling --- Joule heating --- flexible electrode --- cross-linked acrylamide/alginate --- tensile strength --- impedance spectroscopy --- polymer electrolyte --- Li-ion micro-batteries --- flexible anode --- pre-lithiation --- carbon-based polymer nanocomposite --- energy storage --- fuel cell --- electrochemical devices
Choose an application
Mesoscopic physics deals with systems larger than single atoms but small enough to retain their quantum properties. The possibility to create and manipulate conductors of the nanometer scale has given birth to a set of phenomena that have revolutionized physics: quantum Hall effects, persistent currents, weak localization, Coulomb blockade, etc. This Special Issue tackles the latest developments in the field. Contributors discuss time-dependent transport, quantum pumping, nanoscale heat engines and motors, molecular junctions, electron–electron correlations in confined systems, quantum thermo-electrics and current fluctuations. The works included herein represent an up-to-date account of exciting research with a broad impact in both fundamental and applied topics.
Technology: general issues --- quantum transport --- quantum interference --- shot noise --- persistent current --- mesoscale and nanoscale physics --- Complementary Metal Oxide Semiconductor (CMOS) technology --- electron quantum optics --- photo-assisted noise --- charge and heat fluctuations --- time-dependent transport --- electron–photon coupling --- open quantum systems --- phonon transport --- nanostructured materials --- green’s functions --- density-functional tight binding --- Landauer approach, time-dependent transport --- graphene nanoribbons --- nonequilibrium Green’s function --- electronic transport --- thermal transport --- strongly correlated systems --- Landauer-Büttiker formalism --- Boltzmann transport equation --- time-dependent density functional theory --- electron–phonon coupling --- molecular junctions --- thermoelectric properties --- electron–vibration interactions --- electron–electron interactions --- thermoelectricity --- heat engines --- mesoscopic physics --- fluctuations --- thermodynamic uncertainty relations --- quantum thermodynamics --- steady-state dynamics --- nonlinear transport --- adiabatic quantum motors --- adiabatic quantum pumps --- quantum heat engines --- quantum refrigerators --- transport through quantum dots --- spin pump --- spin-orbit interaction --- quantum adiabatic pump --- interferometer --- geometric phase --- nonadiabaticity --- quantum heat pumping --- spin pumping --- relaxation --- time evolution --- quantum information --- entropy production --- Renyi entropy --- superconducting proximity effect --- Kondo effect --- spin polarization --- Anreev reflection --- conditional states --- conditional wavefunction --- Markovian and Non-Markovian dynamics --- stochastic Schrödinger equation --- quantum electron transport --- quantum dots --- fluctuation–dissipation theorem --- Onsager relations --- dynamics of strongly correlated quantum systems --- quantum capacitor --- local fermi liquids --- kondo effect --- coulomb blockade --- mesoscopic systems --- nanophysics --- quantum noise --- quantum pumping --- thermoelectrics --- heat transport --- quantum transport --- quantum interference --- shot noise --- persistent current --- mesoscale and nanoscale physics --- Complementary Metal Oxide Semiconductor (CMOS) technology --- electron quantum optics --- photo-assisted noise --- charge and heat fluctuations --- time-dependent transport --- electron–photon coupling --- open quantum systems --- phonon transport --- nanostructured materials --- green’s functions --- density-functional tight binding --- Landauer approach, time-dependent transport --- graphene nanoribbons --- nonequilibrium Green’s function --- electronic transport --- thermal transport --- strongly correlated systems --- Landauer-Büttiker formalism --- Boltzmann transport equation --- time-dependent density functional theory --- electron–phonon coupling --- molecular junctions --- thermoelectric properties --- electron–vibration interactions --- electron–electron interactions --- thermoelectricity --- heat engines --- mesoscopic physics --- fluctuations --- thermodynamic uncertainty relations --- quantum thermodynamics --- steady-state dynamics --- nonlinear transport --- adiabatic quantum motors --- adiabatic quantum pumps --- quantum heat engines --- quantum refrigerators --- transport through quantum dots --- spin pump --- spin-orbit interaction --- quantum adiabatic pump --- interferometer --- geometric phase --- nonadiabaticity --- quantum heat pumping --- spin pumping --- relaxation --- time evolution --- quantum information --- entropy production --- Renyi entropy --- superconducting proximity effect --- Kondo effect --- spin polarization --- Anreev reflection --- conditional states --- conditional wavefunction --- Markovian and Non-Markovian dynamics --- stochastic Schrödinger equation --- quantum electron transport --- quantum dots --- fluctuation–dissipation theorem --- Onsager relations --- dynamics of strongly correlated quantum systems --- quantum capacitor --- local fermi liquids --- kondo effect --- coulomb blockade --- mesoscopic systems --- nanophysics --- quantum noise --- quantum pumping --- thermoelectrics --- heat transport
Choose an application
Mesoscopic physics deals with systems larger than single atoms but small enough to retain their quantum properties. The possibility to create and manipulate conductors of the nanometer scale has given birth to a set of phenomena that have revolutionized physics: quantum Hall effects, persistent currents, weak localization, Coulomb blockade, etc. This Special Issue tackles the latest developments in the field. Contributors discuss time-dependent transport, quantum pumping, nanoscale heat engines and motors, molecular junctions, electron–electron correlations in confined systems, quantum thermo-electrics and current fluctuations. The works included herein represent an up-to-date account of exciting research with a broad impact in both fundamental and applied topics.
Technology: general issues --- quantum transport --- quantum interference --- shot noise --- persistent current --- mesoscale and nanoscale physics --- Complementary Metal Oxide Semiconductor (CMOS) technology --- electron quantum optics --- photo-assisted noise --- charge and heat fluctuations --- time-dependent transport --- electron–photon coupling --- open quantum systems --- phonon transport --- nanostructured materials --- green’s functions --- density-functional tight binding --- Landauer approach, time-dependent transport --- graphene nanoribbons --- nonequilibrium Green’s function --- electronic transport --- thermal transport --- strongly correlated systems --- Landauer-Büttiker formalism --- Boltzmann transport equation --- time-dependent density functional theory --- electron–phonon coupling --- molecular junctions --- thermoelectric properties --- electron–vibration interactions --- electron–electron interactions --- thermoelectricity --- heat engines --- mesoscopic physics --- fluctuations --- thermodynamic uncertainty relations --- quantum thermodynamics --- steady-state dynamics --- nonlinear transport --- adiabatic quantum motors --- adiabatic quantum pumps --- quantum heat engines --- quantum refrigerators --- transport through quantum dots --- spin pump --- spin-orbit interaction --- quantum adiabatic pump --- interferometer --- geometric phase --- nonadiabaticity --- quantum heat pumping --- spin pumping --- relaxation --- time evolution --- quantum information --- entropy production --- Renyi entropy --- superconducting proximity effect --- Kondo effect --- spin polarization --- Anreev reflection --- conditional states --- conditional wavefunction --- Markovian and Non-Markovian dynamics --- stochastic Schrödinger equation --- quantum electron transport --- quantum dots --- fluctuation–dissipation theorem --- Onsager relations --- dynamics of strongly correlated quantum systems --- quantum capacitor --- local fermi liquids --- kondo effect --- coulomb blockade --- mesoscopic systems --- nanophysics --- quantum noise --- quantum pumping --- thermoelectrics --- heat transport
Choose an application
Carbon-based nanomaterials such as carbon nanotubes, graphene and its derivatives, nanodiamond, fullerenes, and other nano-sized carbon allotropes have recently attracted a lot of attention among the scientific community due to their enormous potential for a wide number of applications arising from their large specific surface area, high electrical and thermal conductivity, and good mechanical properties. The combination of carbon nanomaterials with polymers leads to new nanocomposites with improved structural and functional properties due to synergistic effects. In particular, the properties of carbon-based polymer nanocomposites can be easily tuned by carefully controlling the carbon nanomaterial synthesis route and additionally the versatile synergistic interactions amongst the nanomaterials and polymers. This book provides selected examples of the most recent advances regarding carbon nanomaterial-reinforced polymeric composites. It includes the most representative types of polymeric matrices and covers aspects of new processing techniques, novel surface modifications of carbon nanomaterials and their applications in diverse fields, in particular in electronics and energy storage.
Technology: general issues --- multi walled carbon nanotubes --- polyacrylonitrile --- nascent fiber --- thermal properties --- morphological structure --- nanocomposites --- graphene --- melt processing --- mechanical properties --- electrical conductivity --- electrostatic spraying --- multi-walled carbon nanotubes --- waterborne polyurethane coating --- dispersity --- surface hardness --- wear rate --- friction coefficient --- in-mold decoration injection molding --- microcellular injection molding --- surface quality --- warpage --- multiwalled carbon nanotube --- hyaluronic acid --- microfibers --- wet-spinning --- microstructures --- tensile properties --- Ag --- CNT --- flexible supercapacitor electrode --- polymer conductive film --- cellulose acetate membrane --- PANI --- graphene oxide --- hexamethylene diisocyanate --- nanocomposite --- thermal stability --- polydiphenylamine-2-carboxylic acid --- single-walled carbon nanotubes --- conjugated polymers --- in situ oxidative polymerization --- hybrid nanocomposites --- polypropylene --- carbon nanotube --- titanium dioxide --- reduced graphene oxide --- polyurethane foam --- flexible electronics --- pressure sensing --- polyethyleneimine --- thermoelectric properties --- carrier type --- Paal-Knorr reaction --- polyketone --- carbon nanotubes --- Diels-Alder --- click-chemistry --- hydrogen bonding --- self-healing --- re-workability --- recycling --- Joule heating --- flexible electrode --- cross-linked acrylamide/alginate --- tensile strength --- impedance spectroscopy --- polymer electrolyte --- Li-ion micro-batteries --- flexible anode --- pre-lithiation --- carbon-based polymer nanocomposite --- energy storage --- fuel cell --- electrochemical devices --- n/a
Choose an application
Mesoscopic physics deals with systems larger than single atoms but small enough to retain their quantum properties. The possibility to create and manipulate conductors of the nanometer scale has given birth to a set of phenomena that have revolutionized physics: quantum Hall effects, persistent currents, weak localization, Coulomb blockade, etc. This Special Issue tackles the latest developments in the field. Contributors discuss time-dependent transport, quantum pumping, nanoscale heat engines and motors, molecular junctions, electron–electron correlations in confined systems, quantum thermo-electrics and current fluctuations. The works included herein represent an up-to-date account of exciting research with a broad impact in both fundamental and applied topics.
quantum transport --- quantum interference --- shot noise --- persistent current --- mesoscale and nanoscale physics --- Complementary Metal Oxide Semiconductor (CMOS) technology --- electron quantum optics --- photo-assisted noise --- charge and heat fluctuations --- time-dependent transport --- electron–photon coupling --- open quantum systems --- phonon transport --- nanostructured materials --- green’s functions --- density-functional tight binding --- Landauer approach, time-dependent transport --- graphene nanoribbons --- nonequilibrium Green’s function --- electronic transport --- thermal transport --- strongly correlated systems --- Landauer-Büttiker formalism --- Boltzmann transport equation --- time-dependent density functional theory --- electron–phonon coupling --- molecular junctions --- thermoelectric properties --- electron–vibration interactions --- electron–electron interactions --- thermoelectricity --- heat engines --- mesoscopic physics --- fluctuations --- thermodynamic uncertainty relations --- quantum thermodynamics --- steady-state dynamics --- nonlinear transport --- adiabatic quantum motors --- adiabatic quantum pumps --- quantum heat engines --- quantum refrigerators --- transport through quantum dots --- spin pump --- spin-orbit interaction --- quantum adiabatic pump --- interferometer --- geometric phase --- nonadiabaticity --- quantum heat pumping --- spin pumping --- relaxation --- time evolution --- quantum information --- entropy production --- Renyi entropy --- superconducting proximity effect --- Kondo effect --- spin polarization --- Anreev reflection --- conditional states --- conditional wavefunction --- Markovian and Non-Markovian dynamics --- stochastic Schrödinger equation --- quantum electron transport --- quantum dots --- fluctuation–dissipation theorem --- Onsager relations --- dynamics of strongly correlated quantum systems --- quantum capacitor --- local fermi liquids --- kondo effect --- coulomb blockade --- mesoscopic systems --- nanophysics --- quantum noise --- quantum pumping --- thermoelectrics --- heat transport
Choose an application
In recent years, people have tended to adjust the degree of order/disorder to explore new materials. The degree of order/disorder can be measured by entropy, and it can be divided into two parts: topological disordering and chemical disordering. The former mainly refers to order in the spatial configuration, e.g., amorphous alloys which show short-range ordering but without long-range ordering, while the latter mainly refers to the order in the chemical occupancy, that is to say, the components can replace each other, and typical representatives are high-entropy alloy (HEAs). HEAs, in sharp contrast to traditional alloys based on one or two principal elements, have one striking characteristic: their unusually high entropy of mixing. They have not received much noticed until the review paper entitled “Microstructure and Properties of High-Entropy Alloys” was published in 2014 in the journal of Progress in Materials Science. Numerous reports have shown they exhibit five recognized performance characteristics, namely, strength–plasticity trade-off breaking, irradiation tolerance, corrosion resistance, high-impact toughness within a wider temperature range, and high thermal stability. So far, the development of HEAs has gone through three main stages: 1. Quinary equal-atomic single-phase solid solution alloys; 2. Quaternary or quinary non-equal-atomic multiphase alloys; 3. Medium-entropy alloys, high-entropy fibers, high-entropy films, lightweight HEAs, etc. Nowadays, more in-depth research on high-entropy alloys is urgently needed.
high-entropy alloys --- alloys design --- lightweight alloys --- high entropy alloys --- elemental addition --- annealing treatment --- magnetic property --- microhardness --- in situ X-ray diffraction --- grain refinement --- thermoelectric properties --- scandium effect --- HEA --- high-entropy alloy --- CCA --- compositionally complex alloy --- phase composition --- microstructure --- wear behaviour --- metal matrix composites --- mechanical properties --- high-entropy films --- phase structures --- hardness --- solid-solution --- interstitial phase --- transmission electron microscopy --- compositionally complex alloys --- CrFeCoNi(Nb,Mo) --- corrosion --- sulfuric acid --- sodium chloride --- entropy --- multicomponent --- differential scanning calorimetry (DSC) --- specific heat --- stacking-fault energy --- density functional theory --- nanoscaled high-entropy alloys --- nanodisturbances --- phase transformations --- atomic-scale unstable --- mechanical alloying --- spark plasma sintering --- nanoprecipitates --- annealing --- phase constituent --- ion irradiation --- hardening behavior --- volume swelling --- medium entropy alloy --- high-pressure torsion --- partial recrystallization --- tensile strength --- high-entropy alloys (HEAs) --- phase constitution --- magnetic properties --- Curie temperature --- phase transition --- precipitation --- strengthening --- coherent microstructure --- conventional alloys --- nanocrystalline materials --- high entropy alloy --- sputtering --- deformation and fracture --- strain rate sensitivity --- liquid phase separation --- immiscible alloys --- HEAs --- multicomponent alloys --- miscibility gaps --- multi-principal element alloys --- MPEAs --- complex concentrated alloys --- CCAs --- electron microscopy --- plasticity methods --- plasticity --- serration behavior --- alloy design --- structural metals --- CALPHAD --- solid-solution alloys --- lattice distortion --- phase transformation --- (CoCrFeNi)100−xMox alloys --- corrosion behavior --- gamma double prime nanoparticles --- elemental partitioning --- atom probe tomography --- first-principles calculations --- bcc --- phase stability --- composition scanning --- laser cladding --- high-entropy alloy coating --- AZ91D magnesium alloy --- wear --- kinetics --- deformation --- thermal expansion --- diamond --- composite --- powder metallurgy --- additive manufacturing --- low-activation high-entropy alloys (HEAs) --- high-temperature structural alloys --- microstructures --- compressive properties --- heat-softening resistance --- tensile creep behavior --- microstructural evolution --- creep mechanism --- first-principles calculation --- maximum entropy --- elastic property --- mechanical property --- recrystallization --- laser metal deposition --- elemental powder --- graded material --- refractory high-entropy alloys --- elevated-temperature yield strength --- solid solution strengthening effect --- bulk metallic glass --- complex stress field --- shear band --- flow serration --- deformation mechanism --- ab initio --- configuration entropy --- matrix formulation --- cluster expansion --- cluster variation method --- monte carlo --- thermodynamic integration --- (AlCrTiZrV)-Six-N films --- nanocomposite structure --- refractory high entropy alloys --- medium entropy alloys, mechanical properties --- thin films --- deformation behaviors --- nanocrystalline --- coating --- interface --- mechanical characterization --- high pressure --- polymorphic transition --- solidification --- eutectic dendrites --- hierarchical nanotwins --- precipitation kinetics --- strengthening mechanisms --- elongation prediction --- welding --- Hall–Petch (H–P) effect --- lattice constants --- high-entropy ceramic --- solid-state diffusion --- phase evolution --- mechanical behaviors --- high-entropy film --- low-activation alloys
Choose an application
In recent years, people have tended to adjust the degree of order/disorder to explore new materials. The degree of order/disorder can be measured by entropy, and it can be divided into two parts: topological disordering and chemical disordering. The former mainly refers to order in the spatial configuration, e.g., amorphous alloys which show short-range ordering but without long-range ordering, while the latter mainly refers to the order in the chemical occupancy, that is to say, the components can replace each other, and typical representatives are high-entropy alloy (HEAs). HEAs, in sharp contrast to traditional alloys based on one or two principal elements, have one striking characteristic: their unusually high entropy of mixing. They have not received much noticed until the review paper entitled “Microstructure and Properties of High-Entropy Alloys” was published in 2014 in the journal of Progress in Materials Science. Numerous reports have shown they exhibit five recognized performance characteristics, namely, strength–plasticity trade-off breaking, irradiation tolerance, corrosion resistance, high-impact toughness within a wider temperature range, and high thermal stability. So far, the development of HEAs has gone through three main stages: 1. Quinary equal-atomic single-phase solid solution alloys; 2. Quaternary or quinary non-equal-atomic multiphase alloys; 3. Medium-entropy alloys, high-entropy fibers, high-entropy films, lightweight HEAs, etc. Nowadays, more in-depth research on high-entropy alloys is urgently needed.
Research & information: general --- high-entropy alloys --- alloys design --- lightweight alloys --- high entropy alloys --- elemental addition --- annealing treatment --- magnetic property --- microhardness --- in situ X-ray diffraction --- grain refinement --- thermoelectric properties --- scandium effect --- HEA --- high-entropy alloy --- CCA --- compositionally complex alloy --- phase composition --- microstructure --- wear behaviour --- metal matrix composites --- mechanical properties --- high-entropy films --- phase structures --- hardness --- solid-solution --- interstitial phase --- transmission electron microscopy --- compositionally complex alloys --- CrFeCoNi(Nb,Mo) --- corrosion --- sulfuric acid --- sodium chloride --- entropy --- multicomponent --- differential scanning calorimetry (DSC) --- specific heat --- stacking-fault energy --- density functional theory --- nanoscaled high-entropy alloys --- nanodisturbances --- phase transformations --- atomic-scale unstable --- mechanical alloying --- spark plasma sintering --- nanoprecipitates --- annealing --- phase constituent --- ion irradiation --- hardening behavior --- volume swelling --- medium entropy alloy --- high-pressure torsion --- partial recrystallization --- tensile strength --- high-entropy alloys (HEAs) --- phase constitution --- magnetic properties --- Curie temperature --- phase transition --- precipitation --- strengthening --- coherent microstructure --- conventional alloys --- nanocrystalline materials --- high entropy alloy --- sputtering --- deformation and fracture --- strain rate sensitivity --- liquid phase separation --- immiscible alloys --- HEAs --- multicomponent alloys --- miscibility gaps --- multi-principal element alloys --- MPEAs --- complex concentrated alloys --- CCAs --- electron microscopy --- plasticity methods --- plasticity --- serration behavior --- alloy design --- structural metals --- CALPHAD --- solid-solution alloys --- lattice distortion --- phase transformation --- (CoCrFeNi)100−xMox alloys --- corrosion behavior --- gamma double prime nanoparticles --- elemental partitioning --- atom probe tomography --- first-principles calculations --- bcc --- phase stability --- composition scanning --- laser cladding --- high-entropy alloy coating --- AZ91D magnesium alloy --- wear --- kinetics --- deformation --- thermal expansion --- diamond --- composite --- powder metallurgy --- additive manufacturing --- low-activation high-entropy alloys (HEAs) --- high-temperature structural alloys --- microstructures --- compressive properties --- heat-softening resistance --- tensile creep behavior --- microstructural evolution --- creep mechanism --- first-principles calculation --- maximum entropy --- elastic property --- mechanical property --- recrystallization --- laser metal deposition --- elemental powder --- graded material --- refractory high-entropy alloys --- elevated-temperature yield strength --- solid solution strengthening effect --- bulk metallic glass --- complex stress field --- shear band --- flow serration --- deformation mechanism --- ab initio --- configuration entropy --- matrix formulation --- cluster expansion --- cluster variation method --- monte carlo --- thermodynamic integration --- (AlCrTiZrV)-Six-N films --- nanocomposite structure --- refractory high entropy alloys --- medium entropy alloys, mechanical properties --- thin films --- deformation behaviors --- nanocrystalline --- coating --- interface --- mechanical characterization --- high pressure --- polymorphic transition --- solidification --- eutectic dendrites --- hierarchical nanotwins --- precipitation kinetics --- strengthening mechanisms --- elongation prediction --- welding --- Hall–Petch (H–P) effect --- lattice constants --- high-entropy ceramic --- solid-state diffusion --- phase evolution --- mechanical behaviors --- high-entropy film --- low-activation alloys --- high-entropy alloys --- alloys design --- lightweight alloys --- high entropy alloys --- elemental addition --- annealing treatment --- magnetic property --- microhardness --- in situ X-ray diffraction --- grain refinement --- thermoelectric properties --- scandium effect --- HEA --- high-entropy alloy --- CCA --- compositionally complex alloy --- phase composition --- microstructure --- wear behaviour --- metal matrix composites --- mechanical properties --- high-entropy films --- phase structures --- hardness --- solid-solution --- interstitial phase --- transmission electron microscopy --- compositionally complex alloys --- CrFeCoNi(Nb,Mo) --- corrosion --- sulfuric acid --- sodium chloride --- entropy --- multicomponent --- differential scanning calorimetry (DSC) --- specific heat --- stacking-fault energy --- density functional theory --- nanoscaled high-entropy alloys --- nanodisturbances --- phase transformations --- atomic-scale unstable --- mechanical alloying --- spark plasma sintering --- nanoprecipitates --- annealing --- phase constituent --- ion irradiation --- hardening behavior --- volume swelling --- medium entropy alloy --- high-pressure torsion --- partial recrystallization --- tensile strength --- high-entropy alloys (HEAs) --- phase constitution --- magnetic properties --- Curie temperature --- phase transition --- precipitation --- strengthening --- coherent microstructure --- conventional alloys --- nanocrystalline materials --- high entropy alloy --- sputtering --- deformation and fracture --- strain rate sensitivity --- liquid phase separation --- immiscible alloys --- HEAs --- multicomponent alloys --- miscibility gaps --- multi-principal element alloys --- MPEAs --- complex concentrated alloys --- CCAs --- electron microscopy --- plasticity methods --- plasticity --- serration behavior --- alloy design --- structural metals --- CALPHAD --- solid-solution alloys --- lattice distortion --- phase transformation --- (CoCrFeNi)100−xMox alloys --- corrosion behavior --- gamma double prime nanoparticles --- elemental partitioning --- atom probe tomography --- first-principles calculations --- bcc --- phase stability --- composition scanning --- laser cladding --- high-entropy alloy coating --- AZ91D magnesium alloy --- wear --- kinetics --- deformation --- thermal expansion --- diamond --- composite --- powder metallurgy --- additive manufacturing --- low-activation high-entropy alloys (HEAs) --- high-temperature structural alloys --- microstructures --- compressive properties --- heat-softening resistance --- tensile creep behavior --- microstructural evolution --- creep mechanism --- first-principles calculation --- maximum entropy --- elastic property --- mechanical property --- recrystallization --- laser metal deposition --- elemental powder --- graded material --- refractory high-entropy alloys --- elevated-temperature yield strength --- solid solution strengthening effect --- bulk metallic glass --- complex stress field --- shear band --- flow serration --- deformation mechanism --- ab initio --- configuration entropy --- matrix formulation --- cluster expansion --- cluster variation method --- monte carlo --- thermodynamic integration --- (AlCrTiZrV)-Six-N films --- nanocomposite structure --- refractory high entropy alloys --- medium entropy alloys, mechanical properties --- thin films --- deformation behaviors --- nanocrystalline --- coating --- interface --- mechanical characterization --- high pressure --- polymorphic transition --- solidification --- eutectic dendrites --- hierarchical nanotwins --- precipitation kinetics --- strengthening mechanisms --- elongation prediction --- welding --- Hall–Petch (H–P) effect --- lattice constants --- high-entropy ceramic --- solid-state diffusion --- phase evolution --- mechanical behaviors --- high-entropy film --- low-activation alloys
Listing 1 - 8 of 8 |
Sort by
|