Listing 1 - 10 of 69 | << page >> |
Sort by
|
Choose an application
THERMAL STABILITY --- POLYMERS --- PROPERTIES --- THERMAL STABILITY --- POLYMERS --- PROPERTIES
Choose an application
Solar heating. --- Thermal insulation --- Thermal stability --- Thermal insulation --- Thermal stability
Choose an application
Thermoelectricity is a well-known phenomenon that enables the conversion of heat into electric energy without moving parts. Its exploitation has been widely considered to contribute to the increasing need for energy along with the concerns about the environmental impact of traditional fossil energy sources. In the last few years, significant improvements in the performance of thermoelectric materials have been achieved through chemical doping, solid solution formation, and nanoengineering approaches. Furthermore, the feasibility of flexible, stretchable, and conformable thermoelectric harvesters has been demonstrated and has attracted the interest of an audience from many different fields. However, the path for practical applications of thermoelectrics is still a long one. This Special Issue of Materials intends to bridge the gap between materials science and applications of thermoelectric materials. Many topics are welcome: new thermoelectric compounds; the correlation between material structure and thermoelectric properties; bulk thermoelectric ceramics, oxides, and chalcogenides; bulk thermoelectric alloys and intermetallics; organic and polymeric thermoelectrics; thermoelectric thin films, multilayers, and nanocomposites; theory and modeling; thermal transport and thermal conductivity; applications and devices based on thermoelectric materials; standardization and metrology; and more.
Technology: general issues --- History of engineering & technology --- Materials science --- thermoelectricity --- skutterudites --- crystal structure --- powder x-ray diffraction --- thermal conductivity --- calcium cobaltite --- TE performance --- electrical properties --- composite --- redox tuning --- thermoelectric materials --- joining --- skutterudite alloy --- Co-Mo metallization layer --- Seebeck coefficient --- thin film --- oxides --- copper tin sulfide --- Cu2SnS3 --- CTS --- thermal stability --- chalcogenide --- material production --- porosity --- porous thermoelectric materials --- thermoelectricity --- skutterudites --- crystal structure --- powder x-ray diffraction --- thermal conductivity --- calcium cobaltite --- TE performance --- electrical properties --- composite --- redox tuning --- thermoelectric materials --- joining --- skutterudite alloy --- Co-Mo metallization layer --- Seebeck coefficient --- thin film --- oxides --- copper tin sulfide --- Cu2SnS3 --- CTS --- thermal stability --- chalcogenide --- material production --- porosity --- porous thermoelectric materials
Choose an application
Thermoelectricity is a well-known phenomenon that enables the conversion of heat into electric energy without moving parts. Its exploitation has been widely considered to contribute to the increasing need for energy along with the concerns about the environmental impact of traditional fossil energy sources. In the last few years, significant improvements in the performance of thermoelectric materials have been achieved through chemical doping, solid solution formation, and nanoengineering approaches. Furthermore, the feasibility of flexible, stretchable, and conformable thermoelectric harvesters has been demonstrated and has attracted the interest of an audience from many different fields. However, the path for practical applications of thermoelectrics is still a long one. This Special Issue of Materials intends to bridge the gap between materials science and applications of thermoelectric materials. Many topics are welcome: new thermoelectric compounds; the correlation between material structure and thermoelectric properties; bulk thermoelectric ceramics, oxides, and chalcogenides; bulk thermoelectric alloys and intermetallics; organic and polymeric thermoelectrics; thermoelectric thin films, multilayers, and nanocomposites; theory and modeling; thermal transport and thermal conductivity; applications and devices based on thermoelectric materials; standardization and metrology; and more.
Technology: general issues --- History of engineering & technology --- Materials science --- thermoelectricity --- skutterudites --- crystal structure --- powder x-ray diffraction --- thermal conductivity --- calcium cobaltite --- TE performance --- electrical properties --- composite --- redox tuning --- thermoelectric materials --- joining --- skutterudite alloy --- Co-Mo metallization layer --- Seebeck coefficient --- thin film --- oxides --- copper tin sulfide --- Cu2SnS3 --- CTS --- thermal stability --- chalcogenide --- material production --- porosity --- porous thermoelectric materials --- n/a
Choose an application
Thermoelectricity is a well-known phenomenon that enables the conversion of heat into electric energy without moving parts. Its exploitation has been widely considered to contribute to the increasing need for energy along with the concerns about the environmental impact of traditional fossil energy sources. In the last few years, significant improvements in the performance of thermoelectric materials have been achieved through chemical doping, solid solution formation, and nanoengineering approaches. Furthermore, the feasibility of flexible, stretchable, and conformable thermoelectric harvesters has been demonstrated and has attracted the interest of an audience from many different fields. However, the path for practical applications of thermoelectrics is still a long one. This Special Issue of Materials intends to bridge the gap between materials science and applications of thermoelectric materials. Many topics are welcome: new thermoelectric compounds; the correlation between material structure and thermoelectric properties; bulk thermoelectric ceramics, oxides, and chalcogenides; bulk thermoelectric alloys and intermetallics; organic and polymeric thermoelectrics; thermoelectric thin films, multilayers, and nanocomposites; theory and modeling; thermal transport and thermal conductivity; applications and devices based on thermoelectric materials; standardization and metrology; and more.
thermoelectricity --- skutterudites --- crystal structure --- powder x-ray diffraction --- thermal conductivity --- calcium cobaltite --- TE performance --- electrical properties --- composite --- redox tuning --- thermoelectric materials --- joining --- skutterudite alloy --- Co-Mo metallization layer --- Seebeck coefficient --- thin film --- oxides --- copper tin sulfide --- Cu2SnS3 --- CTS --- thermal stability --- chalcogenide --- material production --- porosity --- porous thermoelectric materials --- n/a
Choose an application
Materials play a very important role in the technological development of a society. As a consequence, the continuous demand for more advanced and sophisticated applications is closely linked to the availability of innovative materials. Although aspects related to the study, the synthesis and the applications of materials are of interdisciplinary interest, in the last few years, great attention has been paid to the development of advanced materials for environmental preservation and sustainable energy technologies, such as gaseous pollutant monitoring, waste water treatment, catalysis, carbon dioxide valorization, green fuel production, energy saving, water adsorption and clean technologies. This Special Issue aims at covering the current design, synthesis and characterization of innovative advanced materials, as well as novel nanotechnologies able to offer promising solutions to the these pressing themes.
Technology: general issues --- History of engineering & technology --- anaerobic digestion --- anchovies --- biorefinery --- circular economy --- d-limonene --- granular activated carbon --- inhibition --- orange peel waste (OPW) --- hydrothermal carbonization --- hydrochar --- 5-hydroxymethylfurfural (5-HMF) --- furfural (FU) --- levulinic acid (LA) --- nanomaterials --- MOS --- resistive sensor --- tin oxide --- fermentation --- diacetyl --- lithium chloride hydrate --- composite foam --- deliquescence --- thermochemical storage --- in situ characterization --- ionic liquids --- heat storage --- thermal stability --- HRMAS NMR --- FTIR --- zinc oxide --- gas sensor --- hexanal --- 1-pentanol --- 1-octen-3-ol --- MOX --- plasmonic nanoparticles --- silicon solar cell --- graphene --- short-circuit current density --- open-circuit voltage --- power conversion efficiency --- n/a
Choose an application
Active (also called “smart”) coatings and thin films are defined as those that are capable of sensing their environment and appropriately responding to that external stimulus. This Special Issue “Active Organic and Organic-Inorganic Hybrid Coatings and Thin Films: Challenges, Developments, Perspectives” collected a series of papers that outline the current frontiers in the development of smart coatings and thin films for corrosion and other types of materials applications. The first four papers focus on novel discoveries on coatings with corrosion protection properties. These include environmentally-friendly polyurethane loaded with cerium nitrate corrosion inhibitor for mild steel protection, hot-pressed organic polymer coatings for the protection of pre-treated aluminum alloy surfaces exposed to NaCl aqueous solutions, functional epoxy coating with modified functional TiO2 for steel substrates protection, and hybrid composites against the thermo-oxidative corrosion of the metal parts of the internal combustion engines, turbines, and heaters. The next paper explores the potential of organic polymer/ceramic composite coatings to enhance the scratch resistance of typical floor laminates. The next three papers highlight other types of smart coatings and thin films, including low-temperature curable hybrid dielectric materials for field-effect transistors, bilayer antireflective coatings for optoelectronic devices, and organic polymers as the thin-film component for enthalpy exchanger systems in air conditioning applications. The final two papers focus on important research specific to coatings that serve as protection and preservation cultural heritage materials.
Research & information: general --- high-temperature coatings --- corrosion protection --- powder coatings --- scale inhibition --- anti-corrosion --- mesoporous TiO2 whiskers --- organic coatings --- mild steel --- waterborne polyurethane --- corrosion --- cerium nitrate --- coating --- HVAC --- SPEEK --- cross-linking --- INCA method --- thin membranes --- high DS --- refractive index --- deposition angle --- wavelength --- antireflective --- omnidirectional --- nanostructures --- thermal stability --- high pressure laminates (HPL) --- overlay --- alumina --- functionalization --- silane coupling agent --- scratch resistance --- scratch visibility --- scratch hardness --- organic thin-film transistors --- dielectric --- organosilicate --- copolymer --- poly(phenylene methylene), aluminum alloy --- AA2024 --- coatings by hot pressing --- additives --- fluorescence --- waterborne coatings --- batch miniemulsion --- weathering --- stone preservation --- coatings --- nanosilica --- nano-TiO2 --- nano-clay --- stone conservation --- wood protection
Choose an application
There is increasingly intensive research for energy storage technologies development due to the enhanced energy needs of the contemporary societies. Increased global energy consumption results in the reduction in the availability of traditional energy resources, such as coal, oil and natural gas. Therefore, there is an urgent need for new systems development based on the conversion and storage of sustainable and clean energy. Phase change materials (PCMs) are one of the key components for the development of advanced sustainable solutions in renewable energy and engineering systems. In order to update the field of renewable energy and engineering systems with the use of PCMs, a Special Issue entitled “Phase Change Materials: Design and Applications” is introduced. This book gathers and reviews the collection of ten contributions (nine articles and one review), with authors from Europe, Asia and Americam accepted for publication in the aforementioned Special Issue of Applied Sciences.
Research & information: general --- Physics --- phase change materials --- thermal energy storage --- energy efficiency --- building applications --- construction materials --- phase-change material --- dispersion --- thermal-mechanical stability --- viscosity --- supercooling --- nucleating agent --- cold storage --- battery cooling --- LPMO --- Fourier Transform ac Voltammetry (FTacV) --- cyclic voltammetry --- Direct Electron Transfer (DET) --- lathrate hydrate --- tetrabutylammonium acrylate (TBAAc) --- crystal growth --- ultrasonic vibration --- polyurethane elastomers --- microencapsulated PCMs --- thermal properties --- mechanical properties --- phase change material --- sugar alcohol --- erythritol --- latent heat storage --- thermal stability --- degradation kinetics --- PCM --- mini-channels --- air --- melting --- solidification --- latent heat thermal energy storage --- phase change materials (PCM) --- macro-encapsulation --- rectangular slab --- experimental study --- sodium nitrate --- thermal conductivity --- microencapsulation --- latent heat --- multicriteria decision --- finite element --- automotive --- energy storage --- n/a
Choose an application
TBC materials in the hot components of a gas turbine are exposed to extremely harsh environments. Therefore, the evaluation of various environmental factors in applying new TBCs is essential. Understanding the mechanisms for degradation which occur in comprehensive environments plays an important role in preventing it and improving the lifetime performance. The development of novel coating techniques can also have a significant impact on lifetime performance as they can alter the microstructure of the coating and alter the various properties resulting from it. This Special Issue presents an original research paper that reports the development of novel TBCs, particularly the application of advanced deposition techniques and novel materials.
History of engineering & technology --- degradation --- high mechanical fatigue --- hot gas path components --- gas turbine lifetime --- gas turbine blade --- ANNs --- passive methods --- building energy --- internal covering --- thermal barrier coating (TBC) --- BaLa2Ti3O10 --- molten salt corrosion --- corrosion mechanisms --- crack healing --- encapsulation --- healing agent --- thermal barrier coating --- thermal durability --- cyclic thermal fatigue --- crack growth --- initial crack length --- failure --- hydrogenated amorphous silicon films --- high temperature oxidation --- super-low friction --- plasma spray–physical vapor deposition --- thermal stability --- thermal barrier coatings --- bond coat species --- electron beam-physical vapor deposition --- cyclic thermal exposure --- plasma spraying --- SrZrO3 --- TBC --- CMAS --- luminescence --- high temperature wear behavior --- dry sliding wear --- CoNiCrAlY --- detonation gun (D-gun) --- supersonic plasma spraying (SSPS)
Choose an application
This book contains manuscripts related to alloys (engineering materials) to discuss potential materials, methods for improvement of the strength and cyclic properties of alloys, the stability of microstructures, the possible application of new (or improved) alloys, and the use of treatment for alloy improvement. The broad spectrum of topics included in the articles of this Special Issue demonstrates that research into the microstructural and mechanical characteristics of alloys represents a contemporary field. These topics are also envisaged to be of interest to scientists in other research centers, and we can still expect new developments in this investigation field.
History of engineering & technology --- magnesium alloy --- ECAP --- texture --- mechanical properties --- Co-based alloy --- tribological properties --- wear --- microstructure --- selective laser sintering (SLS) --- powder injection molding (PIM) --- medium-carbon low-alloy steel --- lath martensite --- effective grain size --- strength --- carbon content --- hot-work die steel --- thermal stability --- carbide --- dislocation --- tempering kinetics --- AZ91 magnesium alloys --- age-hardening response --- microstructure evolution --- β-Mg17Al12 phase --- artificial neural network model --- AA6063 --- fly ash --- response surface methodology --- wear rate --- friction coefficient --- Al-Cu-Li-Mg-Ag alloy --- constitutive equation --- EBSD --- recrystallization --- Cu-Mg alloy --- equal channel angular pressing (ECAP) --- metallic alloys --- chemical composition --- treatment
Listing 1 - 10 of 69 | << page >> |
Sort by
|