Listing 1 - 3 of 3 |
Sort by
|
Choose an application
This book conveyed the visual elements of artwork to the visually impaired through various sensory elements to open a new perspective for appreciating visual artwork. In addition, the technique of expressing a color code by integrating patterns, temperatures, scents, music, and vibrations was explored, and future research topics were presented. A holistic experience using multi-sensory interaction acquired by people with visual impairment was provided to convey the meaning and contents of the work through rich multi-sensory appreciation. A method that allows people with visual impairments to engage in artwork using a variety of senses, including touch, temperature, tactile pattern, and sound, helps them to appreciate artwork at a deeper level than can be achieved with hearing or touch alone. The development of such art appreciation aids for the visually impaired will ultimately improve their cultural enjoyment and strengthen their access to culture and the arts. The development of this new concept aids ultimately expands opportunities for the non-visually impaired as well as the visually impaired to enjoy works of art and breaks down the boundaries between the disabled and the non-disabled in the field of culture and arts through continuous efforts to enhance accessibility. In addition, the developed multi-sensory expression and delivery tool can be used as an educational tool to increase product and artwork accessibility and usability through multi-modal interaction. Training the multi-sensory experiences introduced in this book may lead to more vivid visual imageries or seeing with the mind’s eye.
visually impaired people --- accessibility --- art appreciation --- color --- temperature-depth coding --- thermal interaction --- user experience --- visually impaired --- color sound coding --- accessibility technology --- multimodal interaction --- auditory interface --- touch interface --- vision impairment --- visual impairment --- aesthetics --- multi-sensory --- museum exhibits --- color identification --- tactile perception --- cross modular association --- universal design --- people with visual impairment --- assistive technology --- auralization --- image accessibility --- touchscreen --- nonvisual feedback --- blind --- systematic review --- music recommendation system --- multimedia data processing --- weakly supervised learning --- soundscape music --- media art --- exhibition environments --- multi-sensory interaction --- multi-sensory interface --- scent interface --- n/a
Choose an application
This book conveyed the visual elements of artwork to the visually impaired through various sensory elements to open a new perspective for appreciating visual artwork. In addition, the technique of expressing a color code by integrating patterns, temperatures, scents, music, and vibrations was explored, and future research topics were presented. A holistic experience using multi-sensory interaction acquired by people with visual impairment was provided to convey the meaning and contents of the work through rich multi-sensory appreciation. A method that allows people with visual impairments to engage in artwork using a variety of senses, including touch, temperature, tactile pattern, and sound, helps them to appreciate artwork at a deeper level than can be achieved with hearing or touch alone. The development of such art appreciation aids for the visually impaired will ultimately improve their cultural enjoyment and strengthen their access to culture and the arts. The development of this new concept aids ultimately expands opportunities for the non-visually impaired as well as the visually impaired to enjoy works of art and breaks down the boundaries between the disabled and the non-disabled in the field of culture and arts through continuous efforts to enhance accessibility. In addition, the developed multi-sensory expression and delivery tool can be used as an educational tool to increase product and artwork accessibility and usability through multi-modal interaction. Training the multi-sensory experiences introduced in this book may lead to more vivid visual imageries or seeing with the mind’s eye.
The arts --- Painting & paintings --- visually impaired people --- accessibility --- art appreciation --- color --- temperature-depth coding --- thermal interaction --- user experience --- visually impaired --- color sound coding --- accessibility technology --- multimodal interaction --- auditory interface --- touch interface --- vision impairment --- visual impairment --- aesthetics --- multi-sensory --- museum exhibits --- color identification --- tactile perception --- cross modular association --- universal design --- people with visual impairment --- assistive technology --- auralization --- image accessibility --- touchscreen --- nonvisual feedback --- blind --- systematic review --- music recommendation system --- multimedia data processing --- weakly supervised learning --- soundscape music --- media art --- exhibition environments --- multi-sensory interaction --- multi-sensory interface --- scent interface
Choose an application
Photovoltaic solar energy technology (PV) has been developing rapidly in the past decades, leading to a multi-billion-dollar global market. It is of paramount importance that PV systems function properly, which requires the generation of expected energy both for small-scale systems that consist of a few solar modules and for very large-scale systems containing millions of modules. This book increases the understanding of the issues relevant to PV system design and correlated performance; moreover, it contains research from scholars across the globe in the fields of data analysis and data mapping for the optimal performance of PV systems, faults analysis, various causes for energy loss, and design and integration issues. The chapters in this book demonstrate the importance of designing and properly monitoring photovoltaic systems in the field in order to ensure continued good performance.
fault diagnosis --- modeling --- simulation --- fault tree analysis --- photovoltaic system --- Bartlett’s test --- metaheuristic --- population density --- spatial analyses --- AC parameters --- parameter estimation --- fiber reinforced polymeric plastic (FRP) --- Hartigan’s dip test --- energy --- image processing --- real data --- photovoltaic (PV) systems monitoring --- forecast --- photovoltaic plants --- system --- graphical malfunction detection --- defects --- STATCOM --- photo-generated current --- performance analysis --- photovoltaic module performance --- solar energy --- urban context --- thermal interaction --- underdamped oscillation --- reliability --- membership algorithm --- photovoltaic systems --- availability --- fuzzy logic controller --- ANOVA --- solar farm --- energy yield --- cluster analysis --- photovoltaics --- annual yield --- residential buildings --- PV array --- PV system --- dc-dc converter --- quasi-opposition based learning --- grid-connected --- performance ratio --- organic soiling --- vegetated/green roof --- conventional roof membrane --- UV-fluorescence imaging --- PV thermal performance --- PV systems --- failure mode and effect analysis --- ageing and degradation of PV-modules --- sheet molding compound FRP --- Jarque-Bera’s test --- Tukey’s test --- technical costs --- Kruskal-Wallis’ test --- improved cuckoo search algorithm --- PV energy performance --- pultruded FRP --- cracks --- maximum power point tracking (MPPT) --- structural design --- software development --- floating PV generation structure --- malfunction detection --- modules --- photovoltaic performance --- maximum power point --- GIS --- impedance spectroscopy --- floating PV systems (FPV) --- solar cells --- Renewable Energy --- loss analysis --- shade resilience --- Scanning Electron Microscopy (SEM) --- failure detection --- optimization problem --- failure rates --- FCM algorithm --- stability analysis --- reactive power support --- mooring system --- buck converter --- Mood’s Median test --- photovoltaic modeling --- module architecture --- PV module --- data analysis --- partial shading --- opposition-based learning --- silicon --- floating PV module (FPVM) --- electroluminescence --- urban compactness
Listing 1 - 3 of 3 |
Sort by
|