Narrow your search

Library

FARO (1)

KU Leuven (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

ULiège (1)

VIVES (1)

Vlaams Parlement (1)


Resource type

book (2)


Language

English (2)


Year
From To Submit

2021 (2)

Listing 1 - 2 of 2
Sort by

Book
Rainfall Thresholds and Other Approaches for Landslide Prediction and Early Warning
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Landslides are destructive processes causing casualties and damage worldwide. The majority of the landslides are triggered by intense and/or prolonged rainfall. Therefore, the prediction of the occurrence of rainfall-induced landslides is an important scientific and social issue. To mitigate the risk posed by rainfall-induced landslides, landslide early warning systems (LEWS) can be built and applied at different scales as effective non-structural mitigation measures. Usually, the core of a LEWS is constituted of a mathematical model that predicts landslide occurrence in the monitored areas. In recent decades, rainfall thresholds have become a widespread and well established technique for the prediction of rainfall-induced landslides, and for the setting up of prototype or operational LEWS. A rainfall threshold expresses, with a mathematic law, the rainfall amount that, when reached or exceeded, is likely to trigger one or more landslides. Rainfall thresholds can be defined with relatively few parameters and are very straightforward to operate, because their application within LEWS is usually based only on the comparison of monitored and/or forecasted rainfall. This Special Issue collects contributions on the recent research advances or well-documented applications of rainfall thresholds, as well as other innovative methods for landslide prediction and early warning. Contributions regarding the description of a LEWS or single components of LEWS (e.g., monitoring approaches, forecasting models, communication strategies, and emergency management) are also welcome.

Keywords

Research & information: general --- loess landslide --- DAN-W --- numerical simulation --- dynamic analysis --- rainfall thresholds --- Bhutan --- shallow landslides --- landslides --- Idukki --- early warning system --- landslide hazard --- antecedent rainfall threshold --- landslide susceptibility --- satellite-derived rainfall --- TRMM Multisatellite Precipitation Analysis 3B42 (TMPA) --- tropical Africa --- rainfall --- thresholds --- physicallybased model --- hydrological monitoring --- soil water index --- large-scale landslide --- SWI-D threshold --- shallow landslide --- temporal probability --- landslide and debris flow --- China --- quantile regression --- Wayanad --- early warning --- GIS --- rainfall intensity --- optimization --- rainfall thresholds calculation --- mean annual rainfall --- lithology --- Slovenia --- loess landslide --- DAN-W --- numerical simulation --- dynamic analysis --- rainfall thresholds --- Bhutan --- shallow landslides --- landslides --- Idukki --- early warning system --- landslide hazard --- antecedent rainfall threshold --- landslide susceptibility --- satellite-derived rainfall --- TRMM Multisatellite Precipitation Analysis 3B42 (TMPA) --- tropical Africa --- rainfall --- thresholds --- physicallybased model --- hydrological monitoring --- soil water index --- large-scale landslide --- SWI-D threshold --- shallow landslide --- temporal probability --- landslide and debris flow --- China --- quantile regression --- Wayanad --- early warning --- GIS --- rainfall intensity --- optimization --- rainfall thresholds calculation --- mean annual rainfall --- lithology --- Slovenia


Book
Rainfall Thresholds and Other Approaches for Landslide Prediction and Early Warning
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Landslides are destructive processes causing casualties and damage worldwide. The majority of the landslides are triggered by intense and/or prolonged rainfall. Therefore, the prediction of the occurrence of rainfall-induced landslides is an important scientific and social issue. To mitigate the risk posed by rainfall-induced landslides, landslide early warning systems (LEWS) can be built and applied at different scales as effective non-structural mitigation measures. Usually, the core of a LEWS is constituted of a mathematical model that predicts landslide occurrence in the monitored areas. In recent decades, rainfall thresholds have become a widespread and well established technique for the prediction of rainfall-induced landslides, and for the setting up of prototype or operational LEWS. A rainfall threshold expresses, with a mathematic law, the rainfall amount that, when reached or exceeded, is likely to trigger one or more landslides. Rainfall thresholds can be defined with relatively few parameters and are very straightforward to operate, because their application within LEWS is usually based only on the comparison of monitored and/or forecasted rainfall. This Special Issue collects contributions on the recent research advances or well-documented applications of rainfall thresholds, as well as other innovative methods for landslide prediction and early warning. Contributions regarding the description of a LEWS or single components of LEWS (e.g., monitoring approaches, forecasting models, communication strategies, and emergency management) are also welcome.

Listing 1 - 2 of 2
Sort by