Narrow your search
Listing 1 - 7 of 7
Sort by

Book
Brittle Materials in Mechanical Extremes
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The goal of the Special Issue “Brittle Materials in Mechanical Extremes” is to spark a discussion of the analogies and the differences between different brittle materials, such as ceramics and concrete. The contributions to the Issue span from construction materials (asphalt and concrete) to structural ceramics to ice. Data reported in the Issue were obtained by advanced microstructural techniques (microscopy, 3D imaging, etc.) and linked to mechanical properties (and their changes as a function of aging, composition, etc.). The description of the mechanical behavior of brittle materials under operational loads, for instance, concrete and ceramics under very high temperatures, offers an unconventional viewpoint on the behavior of such materials. While it is by no means exhaustive, this Special Issue paves the road for the fundamental understanding and further development of materials.


Book
Brittle Materials in Mechanical Extremes
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The goal of the Special Issue “Brittle Materials in Mechanical Extremes” is to spark a discussion of the analogies and the differences between different brittle materials, such as ceramics and concrete. The contributions to the Issue span from construction materials (asphalt and concrete) to structural ceramics to ice. Data reported in the Issue were obtained by advanced microstructural techniques (microscopy, 3D imaging, etc.) and linked to mechanical properties (and their changes as a function of aging, composition, etc.). The description of the mechanical behavior of brittle materials under operational loads, for instance, concrete and ceramics under very high temperatures, offers an unconventional viewpoint on the behavior of such materials. While it is by no means exhaustive, this Special Issue paves the road for the fundamental understanding and further development of materials.

Keywords

Research & information: general --- Technology: general issues --- restraint --- creep --- double feedback method --- concrete --- temperature stress testing machine (TSTM) --- alkali-activated slag --- elevated temperatures --- Na2O concentration --- residual strength --- brittleness --- melting --- Fiber-reinforced concrete --- X-ray computed tomography (CT) --- anisotropic fiber orientation --- inverse analysis --- silica --- super-insulating materials --- instrumented indentation --- porosity --- electro-fused zirconia --- microcracking --- synchrotron x-ray refraction radiography (SXRR) --- thermal expansion --- ice --- high rate loading --- compressive loading --- Split Hopkinson bar --- in-situ fractography --- biomaterials --- bioceramics --- coating --- mechanical properties --- existing buildings --- reinforced concrete --- seismic vulnerability assessment --- in situ concrete strength --- variability of concrete strength --- high speed railway --- SBS/CR modified asphalt --- long-term aging --- anti-aging --- engineered cementitious composites --- steel grid --- fiber --- tensile capacity --- energy dissipation --- ceramics --- asphalt --- microstructure --- strength --- restraint --- creep --- double feedback method --- concrete --- temperature stress testing machine (TSTM) --- alkali-activated slag --- elevated temperatures --- Na2O concentration --- residual strength --- brittleness --- melting --- Fiber-reinforced concrete --- X-ray computed tomography (CT) --- anisotropic fiber orientation --- inverse analysis --- silica --- super-insulating materials --- instrumented indentation --- porosity --- electro-fused zirconia --- microcracking --- synchrotron x-ray refraction radiography (SXRR) --- thermal expansion --- ice --- high rate loading --- compressive loading --- Split Hopkinson bar --- in-situ fractography --- biomaterials --- bioceramics --- coating --- mechanical properties --- existing buildings --- reinforced concrete --- seismic vulnerability assessment --- in situ concrete strength --- variability of concrete strength --- high speed railway --- SBS/CR modified asphalt --- long-term aging --- anti-aging --- engineered cementitious composites --- steel grid --- fiber --- tensile capacity --- energy dissipation --- ceramics --- asphalt --- microstructure --- strength


Book
Plant Responses to Stress and Environmental Stimulus
Author:
ISBN: 3036557792 3036557806 Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Plants respond to diverse environmental stimuli such as light, nutrients, temperature, and oxygen, which shape their growth and fate. When these stimuli are suboptimal for adequate plant growth, they cause stress. This book is a collection of research articles providing evidence about plant responses to stresses and environmental stimuli, as well as new methodologies for plant phenotyping.

Keywords

Research & information: general --- Biology, life sciences --- Technology, engineering, agriculture --- abiotic stress tolerance --- ascorbate (AsA) --- cad2-1 --- glutathione (GSH) --- leaf area --- photosynthesis --- root architecture --- seed germination --- vtc2-4 --- vtc5-2 --- expression profiling --- heterosis --- salinity stress --- seedlings --- rice --- nets --- sun chemical protectants --- sunscald --- climate changes --- field identification --- drought resistance --- japonica rice --- germplasm --- agronomic trait --- chili and bell pepper --- low temperature stress --- vegetative and reproductive traits --- pepper breeding --- PCA --- hierarchical cluster analysis --- Olea europaea L. --- drought stress --- stem water potential --- fruit growth --- oil content --- polyphenols --- allopathy --- Beta vulgaris L. --- Brassica rapa L. var. japonica --- Lactuca sativa L. --- phenolic compounds --- Valerianella locusta Laterr. --- bud --- bud burst --- development --- dormancy --- explants --- field capacity --- gravimetric water content --- grapevine --- perennial plants --- water --- biofertilizer --- Glomus mosseae --- colonization --- biostimulant --- FRAP --- legumes --- cover crops --- drought --- biological nitrogen fixation --- water use efficiency --- nitrogen use efficiency --- stable isotopes --- stomatal conductance --- mathematical modeling --- crop breeding --- water stress --- elemental sulphur --- sulphate --- macroelements --- microelements --- Triticum durum --- Triticum turgidum --- abiotic stress --- phenotyping --- Win-RHIZO --- n/a


Book
Performance-Based Design in Structural Fire Engineering
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The performance-based design of structures in fire is gaining growing interest as a rational alternative to the traditionally adopted prescriptive code approach. This interest has led to its introduction in different codes and standards around the world. Although engineers widely use performance-based methods to design structural components in earthquake engineering, the adoption of such methods in fire engineering is still very limited. This Special Issue addresses this shortcoming by providing engineers with the needed knowledge and recent research activities addressing performance-based design in structural fire engineering, including the use of hotspot analysis to estimate the magnitude of risk to people and property in urban areas; simulations of the evacuation of large crowds; and the identification of fire effects on concrete, steel, and special structures.


Book
Plant Protein and Proteome Altlas--Integrated Omics Analyses of Plants under Abiotic Stresses
Authors: --- --- --- --- --- et al.
ISBN: 3039219618 303921960X Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Integrative omics of plants in response to stress conditions play more crucial roles in the post-genomic era. High-quality genomic data provide more deeper understanding of how plants to survive under environmental stresses. This book is focused on concluding the recent progress in the Protein and Proteome Atlas in plants under different stresses. It covers various aspects of plant protein ranging from agricultural proteomics, structure and function of proteins, and approaches for protein identification and quantification.

Keywords

phosphoproteomics --- GLU1 --- somatic embryogenesis --- CHA-SQ-1 --- nitrogen fertilizer --- chilling stress --- differentially abundant proteins --- ATP synthase --- photosynthetic parameters --- photosynthesis --- constitutive splicing --- phosphorylation --- Jatropha curcas --- plants under stress --- postharvest freshness --- Alternanthera philoxeroides --- rubber latex --- Millettia pinnata --- molecular and biochemical basis --- filling kernel --- drought stress --- comparative proteomic analysis --- domain --- micro-exons --- phylogeny --- phos-tagTM --- E. angustifolia --- root cell elongation --- ABA --- pollen abortion --- lncRNA --- transcriptome --- radish --- redox homeostasis --- Nelumbo nucifera --- sugar beet --- shotgun proteomics --- proteomes --- high-temperature stress --- post-genomics era --- model plant --- salt tolerance --- miRNA --- wheat --- physiological response --- stress --- visual proteome map --- transcriptional dynamics --- leaf --- maize --- Dunaliella salina --- phosphatidylinositol --- S-adenosylmethionine decarboxylase --- Gossypium hirsutum --- flavonoid biosynthesis --- phosphatase --- wood vinegar --- heat shock proteins --- silicate limitation --- purine metabolism --- natural rubber biosynthesis --- ancient genes --- cotton --- rubber grass --- abiotic stress --- heat stress --- maturation --- low-temperature stress --- molecular basis --- transcriptome sequencing --- ROS scavenging --- widely targeted metabolomics --- transdifferentiation --- seed development --- alternative splicing --- cultivars --- inositol --- salt stress --- chlorophyll fluorescence parameters --- proteome --- carbon fixation --- AGPase --- transcript-metabolite network --- molecular mechanisms --- Triticum aestivum L. --- Zea mays L. --- ROS --- label-free quantification --- woody oilseed plants --- heat-sensitive spinach variety --- MIPS --- quantitative proteomics --- regulated mechanism --- two-dimensional gel electrophoresis --- potassium --- glutathione --- Salinity stress --- integrated omics --- diatom --- ATP synthase CF1 alpha subunit (chloroplast) --- root --- proteome atlas --- brittle-2 --- mass spectrometry --- genomics --- Taraxacum kok-saghyz --- cytomorphology --- proteomics --- arbuscular mycorrhizal fungi --- signaling pathway --- proteomic --- loss-of-function mutant --- rice --- seedling --- wucai --- leaf sheath --- root and shoot --- antioxidant enzyme --- exon-intron structure diversity --- isobaric tags for relative and absolute quantitation --- regulation and metabolism --- concerted network --- drought --- heat response --- VIGS --- iTRAQ --- nitrogen use efficiency (NUE) --- stem


Book
Performance-Based Design in Structural Fire Engineering
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The performance-based design of structures in fire is gaining growing interest as a rational alternative to the traditionally adopted prescriptive code approach. This interest has led to its introduction in different codes and standards around the world. Although engineers widely use performance-based methods to design structural components in earthquake engineering, the adoption of such methods in fire engineering is still very limited. This Special Issue addresses this shortcoming by providing engineers with the needed knowledge and recent research activities addressing performance-based design in structural fire engineering, including the use of hotspot analysis to estimate the magnitude of risk to people and property in urban areas; simulations of the evacuation of large crowds; and the identification of fire effects on concrete, steel, and special structures.

Keywords

Research & information: general --- Mathematics & science --- fire incidence --- hotspot analysis --- KDE --- Getis-Ord Gi* --- IDW interpolation --- fire risk zones --- built-up areas --- temporal analysis --- sustainable development --- fire --- earthquake --- finite element analysis --- Abaqus --- multi hazard analysis --- Scoria aggregate concrete --- PP fiber --- high temperature --- stress-strain curve --- prefabricated cabin-type substation --- panel --- BP neural network --- thermal–mechanical coupling --- machine learning --- fire behavior --- impact of fires --- repeated impact --- ACI 544-2R --- high temperatures --- ECC --- impact ductility --- oil and gas facility --- offshore platform --- tanker --- steel structure --- bulkhead --- deck --- hydrocarbon fire mode --- fire-resistance limit --- fire protection --- design --- stadiums and arenas --- evacuation time --- safety --- Colosseum --- organizing evacuation --- computer simulation --- City University --- fire temperature --- opening factor --- compartment area --- thermal analysis --- natural fire --- concrete strength --- exposure duration --- maximum temperature --- heating rate --- cooling rate --- reinforced concrete --- columns --- standard fire --- cooling phase --- axial capacity --- temperature-stress history --- fire incidence --- hotspot analysis --- KDE --- Getis-Ord Gi* --- IDW interpolation --- fire risk zones --- built-up areas --- temporal analysis --- sustainable development --- fire --- earthquake --- finite element analysis --- Abaqus --- multi hazard analysis --- Scoria aggregate concrete --- PP fiber --- high temperature --- stress-strain curve --- prefabricated cabin-type substation --- panel --- BP neural network --- thermal–mechanical coupling --- machine learning --- fire behavior --- impact of fires --- repeated impact --- ACI 544-2R --- high temperatures --- ECC --- impact ductility --- oil and gas facility --- offshore platform --- tanker --- steel structure --- bulkhead --- deck --- hydrocarbon fire mode --- fire-resistance limit --- fire protection --- design --- stadiums and arenas --- evacuation time --- safety --- Colosseum --- organizing evacuation --- computer simulation --- City University --- fire temperature --- opening factor --- compartment area --- thermal analysis --- natural fire --- concrete strength --- exposure duration --- maximum temperature --- heating rate --- cooling rate --- reinforced concrete --- columns --- standard fire --- cooling phase --- axial capacity --- temperature-stress history

Listing 1 - 7 of 7
Sort by