Listing 1 - 10 of 49 | << page >> |
Sort by
|
Choose an application
Engineering sciences. Technology --- Personnel management --- Career --- Technology sector --- CD --- Belgium
Choose an application
Sociology of occupations --- Labour economics --- Technology sector --- Career choice --- Book --- Netherlands
Choose an application
Sociology of occupations --- Engineering sciences. Technology --- Sexual division of labour --- Technology sector --- Book --- France
Choose an application
Developmental psychology --- Sociology of occupations --- Engineering sciences. Technology --- Girls --- Technology sector --- Technology --- Teaching materials --- Flanders --- Belgium
Choose an application
Teaching --- Engineering sciences. Technology --- History --- History --- Education --- Technology sector --- Book --- Netherlands
Choose an application
Sociology of occupations --- Community organization --- Sexual division of labour --- Participation --- Technology sector --- Book --- Reports [materialtype] --- Belgium
Choose an application
This thesis investigates whether the real economy continues to provide predictive signals for technology stock returns in U.S. companies during the digital era and economic crises. The study updates and extends previous research by focusing on modern economic indicators and their forecasting power amidst the evolving market landscape influenced by technological advancements and recent economic disruptions. The research explores the viability of historical economic indicators in forecasting stock returns, particularly in the U.S. technology sector. It questions whether these indicators, which proved useful in past decades, still hold predictive power in a radically transformed economic and technological environment. The thesis adopts a mixed-methods approach, combining quantitative analyses with econometric modelling. The data spans several decades, focusing on periods marked by significant economic events, such as the dot-com bubble, the 2008 financial crisis, and the COVID-19 pandemic, to assess the robustness of forecasting models under different economic conditions. The study replicates and extends previous methodologies using RStudio, allowing for a comparison between past and current forecasting abilities of various economic indicators under different economic conditions. Leveraging Google Colab and Python, the thesis incorporates machine learning techniques to examine the predictive power of traditional and newly proposed economic indicators. This analysis aims to uncover complex nonlinear relationships that might be missed by conventional econometric models. The findings suggest that the traditional indicators have diminished in predictive power. The discussion delves into the implications of the findings for investors and policymakers, emphasising the need for adaptive strategies that account for the rapid technological changes and their impact on the economic landscape. The thesis concludes that the real economy continues to provide valuable insights into technology stock returns, even if the predictive power has diminished. It calls for ongoing research to refine these indicators and adapt forecasting models to the changing economic and technological environment. Suggestions for future research include exploring additional digital economy indicators and extending the analysis to global technology markets to validate the findings and enhance the generalizability of the forecasting models. This study contributes to the literature by updating forecasting models with contemporary economic indicators and by demonstrating the evolving relationship between the real economy and technology stock returns in the face of digital transformation and economic crises.
equity premium --- real economy --- technology sector --- Sciences économiques & de gestion > Finance
Choose an application
United States --- United States of America --- Higher education --- Career --- Medical sciences --- Sexual intimidation --- Technology sector --- Corporate culture --- Legislation --- Science --- Book
Choose an application
Het beleid van de Nederlandse overheid is erop gericht om het aantal meisjes/vrouwen in technische opleidingen en technische beroepen te vergroten. In dit eindrapport wordt nagegaan welke knelpunten meisjes/vrouwen ondervinden tijdens het traject onderwijs-arbeidsmarkt. De bestaande projecten worden geanalyseerd ten einde de inzet en effectiviteit van de beleidsinstrumenten te beoordelen.
Sociology of occupations --- Social policy --- Teaching --- Technical, artistic and vocational education --- Education --- Government policy --- Technical education --- Technology sector --- Book --- Netherlands
Choose an application
Het proces van beroepskeuze verloopt verschillend bij meisjes en jongens en heeft alles te maken met socialisatieprocessen. Binnen een bepaalde cultuur in een bepaalde tijd leven ideeën over de rol van de vrouw, de man-vrouw verhoudingen en de verschillen tussen mannen en vroouwen. De invloed van de omgeving (opvoeding, onderwijs en media) op de ontwikkeling van het zelfbeeld en de hiermee samenhangende keuze van opleiding en beroep is zeer groot. Het blijkt dat in het onderwijs de verschillen in socialisatie eerder in stand worden gehouden dan doorbroken. Daarnaast kunnen de structuur van de arbeid en de cultuur op de werkplek voor vrouwen verschillende barrières betekenen bij de beroepskeuze. Om het verschijnsel arbeidsverdeling naar sekse te kunnen doorbreken moeten er vele maatregelen worden genomen. Het opzetten van voorlichtings- en wervingscampagnes is één van de maatregelen waarmee verschillende instanties de laatste jaren hebben geprobeerd vrouwen te interesseren voor technische en mannenberoepen. In deze publicatie worden deze voorlichtings- en wervingscampagnes nader bekeken op hun doelmatigheid.
Sociology of occupations --- Labour economics --- Technical, artistic and vocational education --- Technology --- Technology sector --- Career choice --- Book --- Netherlands
Listing 1 - 10 of 49 | << page >> |
Sort by
|