Listing 1 - 10 of 27 | << page >> |
Sort by
|
Choose an application
Buchenwald survivors Ilona and Henia Karmel were seventeen and twenty years old when they entered the Nazi labor camps from the Kraków ghetto. These remarkable poems were written during that time. The sisters wrote the poems on worksheets stolen from the factories where they worked by day and hid them in their clothing. During what she thought were the last days of her life, Henia entrusted the poems to a cousin who happened to pass her in the forced march at the end of the war. The cousin gave them to Henia's husband in Kraków, who would not locate and reunite with his wife for another six months. This is the first English publication of these extraordinary poems. Fanny Howe's deft adaptations preserve their freshness and innocence while making them entirely compelling. They are presented with a biographical introduction that conveys the powerful story of the sisters' survival from capture to freedom in 1946.
Holocaust, Jewish (1939-1945) --- Karmel-Wolfe, Henia --- Karmel, Ilona, --- Wolfe, Henia Karmel --- -Karmel, Henia --- Karmel, Henryka --- 20th century jewish literature. --- 20th century polish poetry. --- buchenwald survivors. --- buchenwald. --- captivity. --- concentration camp. --- forced labor. --- forced marches. --- hardship. --- heartbreak. --- holocaust studies. --- holocaust. --- human struggles. --- jewish literature. --- jewish studies. --- judaism. --- krakow. --- memory. --- nazi germany. --- nazi labor camps. --- nazis. --- poems. --- poetry collection. --- poetry. --- poland. --- remember. --- resistance. --- s mark taper foundation imprint in jewish studies. --- second world war. --- survival. --- survivor. --- touching. --- tragedy.
Choose an application
Joint replacement is a very successful medical treatment. However, the survivorship of hip, knee, shoulder, and other implants is limited. The degradation of materials and the immune response against degradation products or an altered tissue loading condition as well as infections remain key factors of their failure. Current research in biomechanics and biomaterials is trying to overcome these existing limitations. This includes new implant designs and materials, bearings concepts and tribology, kinematical concepts, surgical techniques, and anti-inflammatory and infection prevention strategies. A careful evaluation of new materials and concepts is required in order to fully assess the strengths and weaknesses and to improve the quality and outcomes of joint replacements. Therefore, extensive research and clinical trials are essential. The main aspects that are addressed in this Special Issue are related to new material, design and manufacturing considerations of implants, implant wear and its potential clinical consequence, implant fixation, infection-related material aspects, and taper-related research topics. This Special Issue gives an overview of the ongoing research in those fields. The contributions were solicited from researchers working in the fields of biomechanics, biomaterials, and bio- and tissue-engineering.
electrocautery --- titanium alloy --- cobalt-chrome alloy --- fatigue behavior --- biomechanical study --- Vertebral body replacement (VBR) --- non metallic --- radiolucent --- CF/PEEK --- biomechanics --- tumor --- vertebral fracture --- spine --- calcium phosphate --- granules --- bone graft substitutes --- total hip arthroplasty --- implant deformation --- acetabulum --- Metasul --- 28 mm small head --- metal-on-metal THA --- cobalt --- chromium --- titanium --- blood metal ions --- inflammation --- cytokines --- metal particles --- metal ions --- synovium --- dual taper modular hip stem --- acetabular revision --- asymptomatic stem modularity --- decision making model --- threshold --- biomaterials --- arthroplasty --- orthopaedic tribology --- experimental simulation --- total knee replacement --- PEEK-OPTIMA™ --- UHMWPE --- third body wear --- modular acetabular cup --- poly-ether-ether-ketone (PEEK) --- ceramics --- ultra-high-molecular-weight polyethylene (UHMW-PE) --- strain distribution --- bone stock --- cup-inlay stability --- disassembly forces --- relative motion --- periprosthetic joint infections --- infection prophylaxis --- Staphylococcus epidermidis --- in vivo osteomyelitis model --- metal wear --- retrieval study --- metal-on-metal articulation --- volumetric wear --- megaendoprosthesis --- total knee arthroplasty --- bone tumor --- Roentgen stereophotogrammetric analysis --- hip arthroplasty --- elementary geometrical shape model --- interchangeability --- head–taper junction --- migration --- ion implantation --- precision casting --- Ti6Al4V --- calcium --- phosphorus --- centrifugal casting --- porous implants --- tantalum --- hip replacement --- revision hip arthroplasty --- primary stability --- backside wear --- cross-linked --- total hip replacement --- hip cup system --- composite --- fibers --- polycarbonate-urethane --- meniscal replacement --- mechanical properties --- meniscus --- silicon nitride --- coating --- joint replacement --- wear --- adhesion --- trunnionosis --- trunnion failure --- fretting corrosion --- head–neck junction --- mechanically assisted crevice corrosion --- implant --- biomaterial --- corrosion --- residual stress --- taper connection --- anodic polarization --- surface treatment --- knee joint --- patellar component --- musculoskeletal multibody simulation --- patellofemoral joint --- polyetheretherketone --- fixation --- debonding --- implant–cement interface --- PMMA --- periprosthetic joint infection --- cement spacer --- articulating spacer --- hip spacer --- two-stage revision --- surface alteration --- surface roughness --- third-body wear --- zirconium oxide particles --- metal-on-cement articulation --- oxford unicompartmental knee arthroplasty --- bearing thickness --- retrieval analysis --- n/a --- biomedical rheology --- viscosity --- bovine calf serum --- shear thinning --- numerical simulation --- head-taper junction --- head-neck junction --- implant-cement interface
Choose an application
Joint replacement is a very successful medical treatment. However, the survivorship of hip, knee, shoulder, and other implants is limited. The degradation of materials and the immune response against degradation products or an altered tissue loading condition as well as infections remain key factors of their failure. Current research in biomechanics and biomaterials is trying to overcome these existing limitations. This includes new implant designs and materials, bearings concepts and tribology, kinematical concepts, surgical techniques, and anti-inflammatory and infection prevention strategies. A careful evaluation of new materials and concepts is required in order to fully assess the strengths and weaknesses and to improve the quality and outcomes of joint replacements. Therefore, extensive research and clinical trials are essential. The main aspects that are addressed in this Special Issue are related to new material, design and manufacturing considerations of implants, implant wear and its potential clinical consequence, implant fixation, infection-related material aspects, and taper-related research topics. This Special Issue gives an overview of the ongoing research in those fields. The contributions were solicited from researchers working in the fields of biomechanics, biomaterials, and bio- and tissue-engineering.
Information technology industries --- electrocautery --- titanium alloy --- cobalt-chrome alloy --- fatigue behavior --- biomechanical study --- Vertebral body replacement (VBR) --- non metallic --- radiolucent --- CF/PEEK --- biomechanics --- tumor --- vertebral fracture --- spine --- calcium phosphate --- granules --- bone graft substitutes --- total hip arthroplasty --- implant deformation --- acetabulum --- Metasul --- 28 mm small head --- metal-on-metal THA --- cobalt --- chromium --- titanium --- blood metal ions --- inflammation --- cytokines --- metal particles --- metal ions --- synovium --- dual taper modular hip stem --- acetabular revision --- asymptomatic stem modularity --- decision making model --- threshold --- biomaterials --- arthroplasty --- orthopaedic tribology --- experimental simulation --- total knee replacement --- PEEK-OPTIMA™ --- UHMWPE --- third body wear --- modular acetabular cup --- poly-ether-ether-ketone (PEEK) --- ceramics --- ultra-high-molecular-weight polyethylene (UHMW-PE) --- strain distribution --- bone stock --- cup-inlay stability --- disassembly forces --- relative motion --- periprosthetic joint infections --- infection prophylaxis --- Staphylococcus epidermidis --- in vivo osteomyelitis model --- metal wear --- retrieval study --- metal-on-metal articulation --- volumetric wear --- megaendoprosthesis --- total knee arthroplasty --- bone tumor --- Roentgen stereophotogrammetric analysis --- hip arthroplasty --- elementary geometrical shape model --- interchangeability --- head-taper junction --- migration --- ion implantation --- precision casting --- Ti6Al4V --- calcium --- phosphorus --- centrifugal casting --- porous implants --- tantalum --- hip replacement --- revision hip arthroplasty --- primary stability --- backside wear --- cross-linked --- total hip replacement --- hip cup system --- composite --- fibers --- polycarbonate-urethane --- meniscal replacement --- mechanical properties --- meniscus --- silicon nitride --- coating --- joint replacement --- wear --- adhesion --- trunnionosis --- trunnion failure --- fretting corrosion --- head-neck junction --- mechanically assisted crevice corrosion --- implant --- biomaterial --- corrosion --- residual stress --- taper connection --- anodic polarization --- surface treatment --- knee joint --- patellar component --- musculoskeletal multibody simulation --- patellofemoral joint --- polyetheretherketone --- fixation --- debonding --- implant-cement interface --- PMMA --- periprosthetic joint infection --- cement spacer --- articulating spacer --- hip spacer --- two-stage revision --- surface alteration --- surface roughness --- third-body wear --- zirconium oxide particles --- metal-on-cement articulation --- oxford unicompartmental knee arthroplasty --- bearing thickness --- retrieval analysis --- biomedical rheology --- viscosity --- bovine calf serum --- shear thinning --- numerical simulation --- electrocautery --- titanium alloy --- cobalt-chrome alloy --- fatigue behavior --- biomechanical study --- Vertebral body replacement (VBR) --- non metallic --- radiolucent --- CF/PEEK --- biomechanics --- tumor --- vertebral fracture --- spine --- calcium phosphate --- granules --- bone graft substitutes --- total hip arthroplasty --- implant deformation --- acetabulum --- Metasul --- 28 mm small head --- metal-on-metal THA --- cobalt --- chromium --- titanium --- blood metal ions --- inflammation --- cytokines --- metal particles --- metal ions --- synovium --- dual taper modular hip stem --- acetabular revision --- asymptomatic stem modularity --- decision making model --- threshold --- biomaterials --- arthroplasty --- orthopaedic tribology --- experimental simulation --- total knee replacement --- PEEK-OPTIMA™ --- UHMWPE --- third body wear --- modular acetabular cup --- poly-ether-ether-ketone (PEEK) --- ceramics --- ultra-high-molecular-weight polyethylene (UHMW-PE) --- strain distribution --- bone stock --- cup-inlay stability --- disassembly forces --- relative motion --- periprosthetic joint infections --- infection prophylaxis --- Staphylococcus epidermidis --- in vivo osteomyelitis model --- metal wear --- retrieval study --- metal-on-metal articulation --- volumetric wear --- megaendoprosthesis --- total knee arthroplasty --- bone tumor --- Roentgen stereophotogrammetric analysis --- hip arthroplasty --- elementary geometrical shape model --- interchangeability --- head-taper junction --- migration --- ion implantation --- precision casting --- Ti6Al4V --- calcium --- phosphorus --- centrifugal casting --- porous implants --- tantalum --- hip replacement --- revision hip arthroplasty --- primary stability --- backside wear --- cross-linked --- total hip replacement --- hip cup system --- composite --- fibers --- polycarbonate-urethane --- meniscal replacement --- mechanical properties --- meniscus --- silicon nitride --- coating --- joint replacement --- wear --- adhesion --- trunnionosis --- trunnion failure --- fretting corrosion --- head-neck junction --- mechanically assisted crevice corrosion --- implant --- biomaterial --- corrosion --- residual stress --- taper connection --- anodic polarization --- surface treatment --- knee joint --- patellar component --- musculoskeletal multibody simulation --- patellofemoral joint --- polyetheretherketone --- fixation --- debonding --- implant-cement interface --- PMMA --- periprosthetic joint infection --- cement spacer --- articulating spacer --- hip spacer --- two-stage revision --- surface alteration --- surface roughness --- third-body wear --- zirconium oxide particles --- metal-on-cement articulation --- oxford unicompartmental knee arthroplasty --- bearing thickness --- retrieval analysis --- biomedical rheology --- viscosity --- bovine calf serum --- shear thinning --- numerical simulation
Choose an application
Carbon fiber is an oft-referenced material that serves as a means to remove mass from large transport infrastructure. Carbon fiber composites, typically plastics reinforced with the carbon fibers, are key materials in the 21st century and have already had a significant impact on reducing CO2 emissions. Though, as with any composite material, the interface where each component meets, in this case the fiber and plastic, is critical to the overall performance.
cellulose derivative --- stack --- lignin --- contact problem --- single fibre pull out --- fatigue --- composite --- sandwich composite --- toughness --- aluminum UNS A97050 --- surface quality --- Carbon fiber --- epoxy curing --- kerf taper --- block copolymers --- conductive yarn --- X-ray transmission --- electron beam --- CT cradle --- thin-wall --- microwave heating --- Seebeck coefficient --- tendon --- air blowing --- epoxy resins --- monocoque structure --- prepreg --- carbon fiber --- surface treatment --- strengthening --- carbon fibre --- surface modification --- epoxy composite --- prestressed near-surface mounted reinforcement (NSMR) --- recycled carbon fiber --- composites --- thermocouple --- structural analysis --- interfacial adhesion --- three-wheeler vehicle --- SOM/SEM --- polycarbonate --- low consumption vehicle --- computed tomography --- thermoforming --- AWJM --- isotropic pitch --- nickel-coated carbon fiber --- finite element model --- dual curing --- fast-cure epoxy resin --- lightweight design --- macrogeometric deviations --- ethylene tar --- CFRP
Choose an application
The Journal of Manufacturing and Materials Processing (JMMP) aims to provide an international forum for the documentation and dissemination of recent, original, and significant research studies in the analysis of processes, equipment, systems, and materials related to material heat treatment, solidification, deformation, addition, removal, welding, and accretion for the industrial fabrication and production of parts, components, and products. The JMMP was established in 2017 and has published more than 300 contributions. It has been listed in the ESCI, Inspec (IET), and Scopus (Elsevier). In celebration of the anniversary of the JMMP, the Editorial Office has put together this Special Issue, which includes several representative papers that reflect the vibrant growth and dynamic trend of research in this field.
History of engineering & technology --- metal additive manufacturing --- analytical model --- temperature prediction --- FEA --- melt pool geometry --- sustainability --- bimetallic object --- cutting force --- uncertainty --- machining power --- precision injection molding --- quality control --- process monitoring --- process fingerprint --- product fingerprint --- flexible abrasive tools --- finishing --- rounding edge --- superalloys --- coordinate metrology --- on-machine measurement --- ball dome artefact --- calibration --- machine tool --- additive manufacturing --- laser powder bed fusion --- process optimization --- orthogonal cutting --- brittle materials --- cohesive elements --- nickel-based superalloys --- high temperature mechanical properties --- creep resistance --- fatigue --- SLM --- AlSi10Mg --- post treatment --- residual stress --- surface roughness --- discrete element method --- seed cracks --- meso-micro machining --- micro abrasive-waterjet technology --- stacking cutting --- micro milling --- taper compensation --- flexure --- subtractive machining --- additive machining --- micrograph
Choose an application
The Journal of Manufacturing and Materials Processing (JMMP) aims to provide an international forum for the documentation and dissemination of recent, original, and significant research studies in the analysis of processes, equipment, systems, and materials related to material heat treatment, solidification, deformation, addition, removal, welding, and accretion for the industrial fabrication and production of parts, components, and products. The JMMP was established in 2017 and has published more than 300 contributions. It has been listed in the ESCI, Inspec (IET), and Scopus (Elsevier). In celebration of the anniversary of the JMMP, the Editorial Office has put together this Special Issue, which includes several representative papers that reflect the vibrant growth and dynamic trend of research in this field.
metal additive manufacturing --- analytical model --- temperature prediction --- FEA --- melt pool geometry --- sustainability --- bimetallic object --- cutting force --- uncertainty --- machining power --- precision injection molding --- quality control --- process monitoring --- process fingerprint --- product fingerprint --- flexible abrasive tools --- finishing --- rounding edge --- superalloys --- coordinate metrology --- on-machine measurement --- ball dome artefact --- calibration --- machine tool --- additive manufacturing --- laser powder bed fusion --- process optimization --- orthogonal cutting --- brittle materials --- cohesive elements --- nickel-based superalloys --- high temperature mechanical properties --- creep resistance --- fatigue --- SLM --- AlSi10Mg --- post treatment --- residual stress --- surface roughness --- discrete element method --- seed cracks --- meso-micro machining --- micro abrasive-waterjet technology --- stacking cutting --- micro milling --- taper compensation --- flexure --- subtractive machining --- additive machining --- micrograph
Choose an application
The Journal of Manufacturing and Materials Processing (JMMP) aims to provide an international forum for the documentation and dissemination of recent, original, and significant research studies in the analysis of processes, equipment, systems, and materials related to material heat treatment, solidification, deformation, addition, removal, welding, and accretion for the industrial fabrication and production of parts, components, and products. The JMMP was established in 2017 and has published more than 300 contributions. It has been listed in the ESCI, Inspec (IET), and Scopus (Elsevier). In celebration of the anniversary of the JMMP, the Editorial Office has put together this Special Issue, which includes several representative papers that reflect the vibrant growth and dynamic trend of research in this field.
History of engineering & technology --- metal additive manufacturing --- analytical model --- temperature prediction --- FEA --- melt pool geometry --- sustainability --- bimetallic object --- cutting force --- uncertainty --- machining power --- precision injection molding --- quality control --- process monitoring --- process fingerprint --- product fingerprint --- flexible abrasive tools --- finishing --- rounding edge --- superalloys --- coordinate metrology --- on-machine measurement --- ball dome artefact --- calibration --- machine tool --- additive manufacturing --- laser powder bed fusion --- process optimization --- orthogonal cutting --- brittle materials --- cohesive elements --- nickel-based superalloys --- high temperature mechanical properties --- creep resistance --- fatigue --- SLM --- AlSi10Mg --- post treatment --- residual stress --- surface roughness --- discrete element method --- seed cracks --- meso-micro machining --- micro abrasive-waterjet technology --- stacking cutting --- micro milling --- taper compensation --- flexure --- subtractive machining --- additive machining --- micrograph --- metal additive manufacturing --- analytical model --- temperature prediction --- FEA --- melt pool geometry --- sustainability --- bimetallic object --- cutting force --- uncertainty --- machining power --- precision injection molding --- quality control --- process monitoring --- process fingerprint --- product fingerprint --- flexible abrasive tools --- finishing --- rounding edge --- superalloys --- coordinate metrology --- on-machine measurement --- ball dome artefact --- calibration --- machine tool --- additive manufacturing --- laser powder bed fusion --- process optimization --- orthogonal cutting --- brittle materials --- cohesive elements --- nickel-based superalloys --- high temperature mechanical properties --- creep resistance --- fatigue --- SLM --- AlSi10Mg --- post treatment --- residual stress --- surface roughness --- discrete element method --- seed cracks --- meso-micro machining --- micro abrasive-waterjet technology --- stacking cutting --- micro milling --- taper compensation --- flexure --- subtractive machining --- additive machining --- micrograph
Choose an application
This Special Issue addresses the important issue of the energy efficiency of both manufacturing processes and systems. Manufacturing is responsible for one-third of global energy consumption and CO2 emissions. Thus, improving the energy efficiency of production has been the focus of research in recent years. Energy efficiency has begun to be considered as one of the key decision-making attributes for manufacturing. This book includes recent studies on methods for the measurement of energy efficiency, tools and techniques for the analysis and development of improvements with regards to energy consumption, modeling and simulation of energy efficiency, and the integration of green and lean manufacturing. This book presents a breadth of relevant information, material, and knowledge to support research, policy-making, practices, and experience transferability to address the issues of energy efficiency.
History of engineering & technology --- energy consumption --- scheduling approach --- mixed-flow shop --- multi-objective optimisation --- tardiness fine --- energy efficiency --- sustainable machining --- multi-objective optimization --- multi-criteria decision making method --- small quantity cooling lubrication SQCL --- cu nanofluid --- remote laser welding --- energy-efficient process --- machine learning --- welding process --- neural network --- knowledge representation --- fuzzy reasoning Petri net --- energy efficient operation --- manufacturing system --- Manufacturing --- life-cycle assessment --- aluminum --- cast iron --- pulp --- paper --- structural change --- compressed air systems --- energy data analysis --- energy measures --- performance control --- operations --- maintenance --- energy accounting --- laser drilling --- percussion --- trepanning --- productivity --- cost --- material removal rate (MRR) --- specific energy consumption (SEC) --- Taguchi --- hole taper --- IN 718 --- electric discharge machining --- response surface methodology --- sustainability --- surface quality --- microstructure --- multi-criteria decision making --- process planning --- manufacturing energy efficiency --- clean manufacturing --- sustainable manufacturing --- digital manufacturing --- energy consumption --- scheduling approach --- mixed-flow shop --- multi-objective optimisation --- tardiness fine --- energy efficiency --- sustainable machining --- multi-objective optimization --- multi-criteria decision making method --- small quantity cooling lubrication SQCL --- cu nanofluid --- remote laser welding --- energy-efficient process --- machine learning --- welding process --- neural network --- knowledge representation --- fuzzy reasoning Petri net --- energy efficient operation --- manufacturing system --- Manufacturing --- life-cycle assessment --- aluminum --- cast iron --- pulp --- paper --- structural change --- compressed air systems --- energy data analysis --- energy measures --- performance control --- operations --- maintenance --- energy accounting --- laser drilling --- percussion --- trepanning --- productivity --- cost --- material removal rate (MRR) --- specific energy consumption (SEC) --- Taguchi --- hole taper --- IN 718 --- electric discharge machining --- response surface methodology --- sustainability --- surface quality --- microstructure --- multi-criteria decision making --- process planning --- manufacturing energy efficiency --- clean manufacturing --- sustainable manufacturing --- digital manufacturing
Choose an application
The last decade has contributed to the rapid progress in developing high-power microwave sources. This Special Issue aims to bring together information about the most striking theoretical and experimental results, new trends in development, remarkable modern applications, new demands in parameter enhancement, and future goals. Although only a tiny part of the achievements of recent years is included in this Issue, we hope that the presented articles will be useful for experts and students focusing on modern vacuum electronics.
Technology: general issues --- Energy industries & utilities --- velocity ratio --- velocity spread --- low-voltage --- gyrotrons --- MIG --- particle simulation --- space charge effects --- pillbox window --- wide-band --- W-band --- low loss --- mode converter --- 220 GHz --- taper --- terahertz --- traveling-wave tube --- folded waveguide (FWG) --- slow wave system --- high harmonic traveling wave tube --- gyrotron --- quasi-optical cavity --- confocal waveguide --- frequency tuning --- high power --- sub-millimeter wave --- PFN-Marx --- compact --- modular --- trigger source --- gas switch --- mica capacitor --- millimeter waves --- wireless power transmitting --- quasi-optical antenna --- gaussian beam --- Gyrotron --- sub-terahertz --- high-power microwave source --- HPM source --- virtual cathode oscillator --- vircator --- ring reflector --- high-power electromagnetic waves (HPEM) --- semiconductor --- failure threshold time --- microwave hardness --- electromagnetic pulse (EMP) shielding --- broadband --- gyro-TWT --- high-resolution imaging radar --- TE02 mode --- dielectric properties --- low-reflection barrier windows --- broadband window --- microwaves --- terahertz radiation --- velocity ratio --- velocity spread --- low-voltage --- gyrotrons --- MIG --- particle simulation --- space charge effects --- pillbox window --- wide-band --- W-band --- low loss --- mode converter --- 220 GHz --- taper --- terahertz --- traveling-wave tube --- folded waveguide (FWG) --- slow wave system --- high harmonic traveling wave tube --- gyrotron --- quasi-optical cavity --- confocal waveguide --- frequency tuning --- high power --- sub-millimeter wave --- PFN-Marx --- compact --- modular --- trigger source --- gas switch --- mica capacitor --- millimeter waves --- wireless power transmitting --- quasi-optical antenna --- gaussian beam --- Gyrotron --- sub-terahertz --- high-power microwave source --- HPM source --- virtual cathode oscillator --- vircator --- ring reflector --- high-power electromagnetic waves (HPEM) --- semiconductor --- failure threshold time --- microwave hardness --- electromagnetic pulse (EMP) shielding --- broadband --- gyro-TWT --- high-resolution imaging radar --- TE02 mode --- dielectric properties --- low-reflection barrier windows --- broadband window --- microwaves --- terahertz radiation
Choose an application
This book explores the ways in which the early rabbis reshaped biblical laws of ritual purity and impurity and argues that the rabbis' new purity discourse generated a unique notion of a bodily self. Focusing on the Mishnah, a Palestinian legal codex compiled around the turn of the third century CE, Mira Balberg shows how the rabbis constructed the processes of contracting, conveying, and managing ritual impurity as ways of negotiating the relations between one's self and one's body and, more broadly, the relations between one's self and one's human and nonhuman environments. With their heightened emphasis on subjectivity, consciousness, and self-reflection, the rabbis reinvented biblically inherited language and practices in a way that resonated with central cultural concerns and intellectual commitments of the Greco-Roman Mediterranean world. Purity, Body, and Self in Early Rabbinic Literature adds a new dimension to the study of practices of self-making in antiquity by suggesting that not only philosophical exercises but also legal paradigms functioned as sites through which the self was shaped and improved.
Rabbinical literature --- Purity, Ritual --- Immersion (Judaism) --- Purity, Ritual (Judaism) --- History and criticism. --- Judaism. --- 233.55 --- 236.1 --- 296*6 --- 296.2 --- 236.1 Dood. Scheiding van lichaam en ziel --- Dood. Scheiding van lichaam en ziel --- 233.55 Eenheid van lichaam en ziel bij de mens --- Eenheid van lichaam en ziel bij de mens --- 296*6 Joodse theologie en filosofie--(algemeen) --- Joodse theologie en filosofie--(algemeen) --- 296.2 Antisemitisme --- Antisemitisme --- Judaism --- History and criticism --- ancient judaism. --- antiquity. --- bible. --- biblical language. --- biblical law. --- biblical practices. --- bodily self. --- consciousness. --- cultural studies. --- early rabbis. --- greco roman mediterranean world. --- history of judaism. --- human environment. --- jewish studies. --- judaism. --- mishnah. --- nonhuman environment. --- palestinian legal codex. --- philosophy of halakah. --- rabbinic texts. --- religion. --- religious studies. --- religious. --- ritual impurity. --- ritual purity. --- s mark taper foundation imprint in jewish studies series. --- self making. --- self reflection. --- spiritual. --- subjectivity.
Listing 1 - 10 of 27 | << page >> |
Sort by
|