Listing 1 - 4 of 4 |
Sort by
|
Choose an application
Recently, many kinds of foods and food-derived nutrients have been reported to show health-beneficial effects. In particular, some foods and food-derived nutrients have shown anti-aging effects on several organs and tissues, such as brain, muscle, skin, intestine, and so on. In some kinds of foods, the molecular basis of their functionalities (e.g., anti-brain aging, anti-sarcopenia, and anti-skin aging) and inter-tissue networks activated by these foods mediated by exosomes, cytokines, and immune cells have been clarified in detail.
Research & information: general --- Biology, life sciences --- Food & society --- raw-milk cheese --- Caenorhabditis elegans --- longevity --- oxidative stress --- DAF-16 --- p38 MAPK --- anthocyanins --- structure --- glucose and lipid metabolism --- human health --- meta-analysis --- telomerase reverse transcriptase --- keratinocyte–hair follicle stem cell interaction --- exosomes --- telogen–anagen transition --- hair cycle regulation --- caffeine --- intestinal aging --- anti-aging --- vitellogenesis --- mitochondrial function --- oxidative stress response --- GABA --- exosome --- gut-brain interaction --- Caco-2 --- SH-SY5Y --- argan press-cake --- MITF --- JNK --- cAMP/PKA --- Wnt/β-catenin --- microarray analysis --- maslinic acid --- muscle atrophy --- muscle strength --- denervation --- olive peel --- SGLT1 --- transporter --- tangeretin --- cardamonin --- intestinal epithelial cell --- Phgdh --- liver --- l-serine deficiency --- insulin signaling --- glucose tolerance --- inflammaging --- aging related disorders --- low grade inflammation --- nutrients --- natural herbs --- pro-inflammatory cytokines --- regulatory T cells --- retinaldehyde dehydrogenase --- IgA --- quercetin --- luteolin
Choose an application
Flavonoids are ubiquitously present in plant-based foods and natural health products. The molecule of flavonoids is characterized by a 15-carbon skeleton of C6–C3–C6, with the different structural configuration of subclasses. The major subclasses of flavonoids with health-promotional properties are the flavanols or catechins (e.g., epigallocatechin 3-gallate from green tea), the flavones (e.g., apigenin from celery), the flavonols (e.g., quercetin glycosides from apples, berries, and onion), the flavanones (e.g., naringenin from citrus), the anthocyanins (e.g., cyanidin-3-O-glucoside from berries), and the isoflavones (e.g., genistein from soya beans). Scientific evidence has strongly shown that regular intake of dietary flavonoids in efficacious amounts reduces the risk of oxidative stress- and chronic inflammation-mediated pathogenesis of human diseases such as cardiovascular disease, certain cancers, and neurological disorders. The physiological benefits of dietary flavonoids have been demonstrated to be due to multiple mechanisms of action, including regulating redox homeostasis, epigenetic regulations, activation of survival genes and signaling pathways, regulation of mitochondrial function and bioenergetics, and modulation of inflammation response. The role of flavonoids on gut microbiota and the impact of microbial metabolites of flavonoids on optimal health has begun to unravel. The complex physiological modulations of flavonoid molecules are due to their structural diversity. However, some flavonoids are not absorbed well, and their bioavailability could be enhanced through structural modifications and applications of nanotechnology, such as encapsulation. This Special Issue consists of four review articles on flavonoids and 15 original research articles, which cover the latest findings on the role of dietary flavonoids and their derivatives in disease prevention and treatment.
Humanities --- Social interaction --- luteolin --- apigenin --- bacoside A --- bacopaside I --- vasorelaxation --- isorhamnetin --- flavonoid --- bacterial sepsis --- toll-like receptor 4 --- inflammation --- citrus flavonoids --- neohesperidin --- anti-aging activity --- chronological lifespan --- synergistic effect --- clinical trials --- natural products --- hyperalgesia --- allodynia --- analgesia --- hypersensitivity --- cytokines --- NF-kB --- defatted pitaya seed --- extraction --- phenolic content --- flavonoid content --- antioxidant activity --- response surface methodology --- flavonoids --- aglycons --- glycosides --- IL-1β --- TNF-α --- IL-6 --- IL-8 --- pro-inflammatory cytokines --- Acer okamotoanum --- afzelin --- isoquercitrin --- obesity --- quercitrin --- aspirin --- cancer prevention --- hydroxybenzoic acids --- cell cycle --- CDKs --- colorectal cancer --- infectious diseases --- amoebiasis --- Mexican oregano --- bioguided isolation --- antiprotozoal agents --- flavones --- cancer --- microbiome --- molecular mechanisms --- gene and protein regulatory networks --- macrophages --- NF-κB --- IKKβ, inflammatory cytokines --- apoptosis --- foods for health --- tangeretin --- cancer stem cells --- Stat3 --- citrus --- CD44+/CD24− --- phytochemicals --- flavonoids and their derivatives --- phytomedicine --- COVID-19 --- SARS-COV-2 --- smart nanoparticles --- non-flavonoids --- membrane PUFAs profile --- cell morphology --- human colon cancer cells --- cranberry --- urinary tract infections --- UTIs --- uropathogenic Escherichia coli --- UPEC --- flavan-3-ols --- A-type proanthocyanidins --- phenolic metabolites --- antiadhesive activity --- probiotics --- anthocyanin --- tobacco-specific nitrosamine --- carcinogenesis --- cell proliferation --- cancer chemoprevention --- lung cancer --- chalcones --- DNA damage --- anticancer activity --- canine cancer cell lines --- angiogenesis --- in-vivo angiogenesis --- CAM assay --- SAR --- n/a --- cognition --- passive avoidance test --- memory extinction --- mice --- microglia --- neuroprotection --- black rice cyanidin-3-O-glucoside --- wood sterols --- dyslipidemia --- CVD
Choose an application
Flavonoids are ubiquitously present in plant-based foods and natural health products. The molecule of flavonoids is characterized by a 15-carbon skeleton of C6–C3–C6, with the different structural configuration of subclasses. The major subclasses of flavonoids with health-promotional properties are the flavanols or catechins (e.g., epigallocatechin 3-gallate from green tea), the flavones (e.g., apigenin from celery), the flavonols (e.g., quercetin glycosides from apples, berries, and onion), the flavanones (e.g., naringenin from citrus), the anthocyanins (e.g., cyanidin-3-O-glucoside from berries), and the isoflavones (e.g., genistein from soya beans). Scientific evidence has strongly shown that regular intake of dietary flavonoids in efficacious amounts reduces the risk of oxidative stress- and chronic inflammation-mediated pathogenesis of human diseases such as cardiovascular disease, certain cancers, and neurological disorders. The physiological benefits of dietary flavonoids have been demonstrated to be due to multiple mechanisms of action, including regulating redox homeostasis, epigenetic regulations, activation of survival genes and signaling pathways, regulation of mitochondrial function and bioenergetics, and modulation of inflammation response. The role of flavonoids on gut microbiota and the impact of microbial metabolites of flavonoids on optimal health has begun to unravel. The complex physiological modulations of flavonoid molecules are due to their structural diversity. However, some flavonoids are not absorbed well, and their bioavailability could be enhanced through structural modifications and applications of nanotechnology, such as encapsulation. This Special Issue consists of four review articles on flavonoids and 15 original research articles, which cover the latest findings on the role of dietary flavonoids and their derivatives in disease prevention and treatment.
luteolin --- apigenin --- bacoside A --- bacopaside I --- vasorelaxation --- isorhamnetin --- flavonoid --- bacterial sepsis --- toll-like receptor 4 --- inflammation --- citrus flavonoids --- neohesperidin --- anti-aging activity --- chronological lifespan --- synergistic effect --- clinical trials --- natural products --- hyperalgesia --- allodynia --- analgesia --- hypersensitivity --- cytokines --- NF-kB --- defatted pitaya seed --- extraction --- phenolic content --- flavonoid content --- antioxidant activity --- response surface methodology --- flavonoids --- aglycons --- glycosides --- IL-1β --- TNF-α --- IL-6 --- IL-8 --- pro-inflammatory cytokines --- Acer okamotoanum --- afzelin --- isoquercitrin --- obesity --- quercitrin --- aspirin --- cancer prevention --- hydroxybenzoic acids --- cell cycle --- CDKs --- colorectal cancer --- infectious diseases --- amoebiasis --- Mexican oregano --- bioguided isolation --- antiprotozoal agents --- flavones --- cancer --- microbiome --- molecular mechanisms --- gene and protein regulatory networks --- macrophages --- NF-κB --- IKKβ, inflammatory cytokines --- apoptosis --- foods for health --- tangeretin --- cancer stem cells --- Stat3 --- citrus --- CD44+/CD24− --- phytochemicals --- flavonoids and their derivatives --- phytomedicine --- COVID-19 --- SARS-COV-2 --- smart nanoparticles --- non-flavonoids --- membrane PUFAs profile --- cell morphology --- human colon cancer cells --- cranberry --- urinary tract infections --- UTIs --- uropathogenic Escherichia coli --- UPEC --- flavan-3-ols --- A-type proanthocyanidins --- phenolic metabolites --- antiadhesive activity --- probiotics --- anthocyanin --- tobacco-specific nitrosamine --- carcinogenesis --- cell proliferation --- cancer chemoprevention --- lung cancer --- chalcones --- DNA damage --- anticancer activity --- canine cancer cell lines --- angiogenesis --- in-vivo angiogenesis --- CAM assay --- SAR --- n/a --- cognition --- passive avoidance test --- memory extinction --- mice --- microglia --- neuroprotection --- black rice cyanidin-3-O-glucoside --- wood sterols --- dyslipidemia --- CVD
Choose an application
Flavonoids are ubiquitously present in plant-based foods and natural health products. The molecule of flavonoids is characterized by a 15-carbon skeleton of C6–C3–C6, with the different structural configuration of subclasses. The major subclasses of flavonoids with health-promotional properties are the flavanols or catechins (e.g., epigallocatechin 3-gallate from green tea), the flavones (e.g., apigenin from celery), the flavonols (e.g., quercetin glycosides from apples, berries, and onion), the flavanones (e.g., naringenin from citrus), the anthocyanins (e.g., cyanidin-3-O-glucoside from berries), and the isoflavones (e.g., genistein from soya beans). Scientific evidence has strongly shown that regular intake of dietary flavonoids in efficacious amounts reduces the risk of oxidative stress- and chronic inflammation-mediated pathogenesis of human diseases such as cardiovascular disease, certain cancers, and neurological disorders. The physiological benefits of dietary flavonoids have been demonstrated to be due to multiple mechanisms of action, including regulating redox homeostasis, epigenetic regulations, activation of survival genes and signaling pathways, regulation of mitochondrial function and bioenergetics, and modulation of inflammation response. The role of flavonoids on gut microbiota and the impact of microbial metabolites of flavonoids on optimal health has begun to unravel. The complex physiological modulations of flavonoid molecules are due to their structural diversity. However, some flavonoids are not absorbed well, and their bioavailability could be enhanced through structural modifications and applications of nanotechnology, such as encapsulation. This Special Issue consists of four review articles on flavonoids and 15 original research articles, which cover the latest findings on the role of dietary flavonoids and their derivatives in disease prevention and treatment.
Humanities --- Social interaction --- luteolin --- apigenin --- bacoside A --- bacopaside I --- vasorelaxation --- isorhamnetin --- flavonoid --- bacterial sepsis --- toll-like receptor 4 --- inflammation --- citrus flavonoids --- neohesperidin --- anti-aging activity --- chronological lifespan --- synergistic effect --- clinical trials --- natural products --- hyperalgesia --- allodynia --- analgesia --- hypersensitivity --- cytokines --- NF-kB --- defatted pitaya seed --- extraction --- phenolic content --- flavonoid content --- antioxidant activity --- response surface methodology --- flavonoids --- aglycons --- glycosides --- IL-1β --- TNF-α --- IL-6 --- IL-8 --- pro-inflammatory cytokines --- Acer okamotoanum --- afzelin --- isoquercitrin --- obesity --- quercitrin --- aspirin --- cancer prevention --- hydroxybenzoic acids --- cell cycle --- CDKs --- colorectal cancer --- infectious diseases --- amoebiasis --- Mexican oregano --- bioguided isolation --- antiprotozoal agents --- flavones --- cancer --- microbiome --- molecular mechanisms --- gene and protein regulatory networks --- macrophages --- NF-κB --- IKKβ, inflammatory cytokines --- apoptosis --- foods for health --- tangeretin --- cancer stem cells --- Stat3 --- citrus --- CD44+/CD24− --- phytochemicals --- flavonoids and their derivatives --- phytomedicine --- COVID-19 --- SARS-COV-2 --- smart nanoparticles --- non-flavonoids --- membrane PUFAs profile --- cell morphology --- human colon cancer cells --- cranberry --- urinary tract infections --- UTIs --- uropathogenic Escherichia coli --- UPEC --- flavan-3-ols --- A-type proanthocyanidins --- phenolic metabolites --- antiadhesive activity --- probiotics --- anthocyanin --- tobacco-specific nitrosamine --- carcinogenesis --- cell proliferation --- cancer chemoprevention --- lung cancer --- chalcones --- DNA damage --- anticancer activity --- canine cancer cell lines --- angiogenesis --- in-vivo angiogenesis --- CAM assay --- SAR --- cognition --- passive avoidance test --- memory extinction --- mice --- microglia --- neuroprotection --- black rice cyanidin-3-O-glucoside --- wood sterols --- dyslipidemia --- CVD
Listing 1 - 4 of 4 |
Sort by
|