Narrow your search

Library

FARO (1)

KU Leuven (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

ULB (1)

ULiège (1)

VIVES (1)

More...

Resource type

book (3)


Language

English (3)


Year
From To Submit

2022 (3)

Listing 1 - 3 of 3
Sort by

Book
The Role of Extracellular Matrix in Cancer Development and Progression
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The extracellular matrix (ECM) scaffold, which surrounds and supports the cells in tissues, consists of fibrillar proteins, proteoglycans, glycosaminoglycans, signaling molecules, and enzymes involved in its remodeling. The stages of cancer progression, e.g., local invasion, intravasation, extravasation, distant invasion and immunosuppression, are obligatorily perpetrated through interactions of these tumor cells with the ECM. Cancer-related ECM changes can be exploited for the evaluation of disease progression, anticancer therapy development, and monitoring of therapy response. Thus, in breast cancer, hyaluronan-mediated wound repair mechanisms are hijacked to promote tumor development. Altered mechanical properties of the pancreatic cancer ECM are immunosuppressive and prevent the penetration of cytotoxic chemotherapy agents. The expression of the proteoglycan syndecan-4 is modulated by anticancer drugs, suggesting its potential druggabilty capacity. Another proteoglycan, lumican, is proposed as a cancer prognosis marker, chemoresistance regulator, and cancer therapy target. Due to their remodeling properties, the MMPs are vital mediators and important therapeutic targets. Treatment of breast cancer cells with sulfated hyaluronan has been shown to attenuate tumor cell growth, migration, and invasion. Extracellular vesicles (EVs), comprising exosomes, microvesicles, and apoptotic bodies, are released by all cells into the ECM and body fluids and can be utilized as diagnostic markers in malignant pleural mesothelioma. These exciting developments encourage tumor biology scientists for further creative research.

Keywords

Research & information: general --- elastin --- ribosomal protein SA --- tongue carcinoma --- MMP-2 --- EGCG --- pancreatic ductal adenocarcinoma --- syndecans --- proteoglycans --- tumor progression --- angiogenesis --- syndecan-4 --- heparan sulfate --- cancer --- prognosis --- biomarker --- signal transduction --- proteoglycan --- metastasis --- extracellular matrix --- fibrosis --- immune cell modulation --- neutrophils --- neutrophil extracellular trap --- macrophages --- BCC --- MMP --- TIMP --- invasion --- lumican --- cancer cell growth --- motility --- hyaluronan --- RHAMM --- CD44 --- wound repair --- breast cancer --- malignant pleural mesothelioma --- pleural effusion --- extracellular vesicles --- biomarkers --- sulfated hyaluronan --- estrogen receptors --- epithelial-to-mesenchymal transition --- matrix metalloproteinases --- elastin --- ribosomal protein SA --- tongue carcinoma --- MMP-2 --- EGCG --- pancreatic ductal adenocarcinoma --- syndecans --- proteoglycans --- tumor progression --- angiogenesis --- syndecan-4 --- heparan sulfate --- cancer --- prognosis --- biomarker --- signal transduction --- proteoglycan --- metastasis --- extracellular matrix --- fibrosis --- immune cell modulation --- neutrophils --- neutrophil extracellular trap --- macrophages --- BCC --- MMP --- TIMP --- invasion --- lumican --- cancer cell growth --- motility --- hyaluronan --- RHAMM --- CD44 --- wound repair --- breast cancer --- malignant pleural mesothelioma --- pleural effusion --- extracellular vesicles --- biomarkers --- sulfated hyaluronan --- estrogen receptors --- epithelial-to-mesenchymal transition --- matrix metalloproteinases


Book
The Role of Extracellular Matrix in Cancer Development and Progression
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The extracellular matrix (ECM) scaffold, which surrounds and supports the cells in tissues, consists of fibrillar proteins, proteoglycans, glycosaminoglycans, signaling molecules, and enzymes involved in its remodeling. The stages of cancer progression, e.g., local invasion, intravasation, extravasation, distant invasion and immunosuppression, are obligatorily perpetrated through interactions of these tumor cells with the ECM. Cancer-related ECM changes can be exploited for the evaluation of disease progression, anticancer therapy development, and monitoring of therapy response. Thus, in breast cancer, hyaluronan-mediated wound repair mechanisms are hijacked to promote tumor development. Altered mechanical properties of the pancreatic cancer ECM are immunosuppressive and prevent the penetration of cytotoxic chemotherapy agents. The expression of the proteoglycan syndecan-4 is modulated by anticancer drugs, suggesting its potential druggabilty capacity. Another proteoglycan, lumican, is proposed as a cancer prognosis marker, chemoresistance regulator, and cancer therapy target. Due to their remodeling properties, the MMPs are vital mediators and important therapeutic targets. Treatment of breast cancer cells with sulfated hyaluronan has been shown to attenuate tumor cell growth, migration, and invasion. Extracellular vesicles (EVs), comprising exosomes, microvesicles, and apoptotic bodies, are released by all cells into the ECM and body fluids and can be utilized as diagnostic markers in malignant pleural mesothelioma. These exciting developments encourage tumor biology scientists for further creative research.


Book
The Role of Extracellular Matrix in Cancer Development and Progression
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The extracellular matrix (ECM) scaffold, which surrounds and supports the cells in tissues, consists of fibrillar proteins, proteoglycans, glycosaminoglycans, signaling molecules, and enzymes involved in its remodeling. The stages of cancer progression, e.g., local invasion, intravasation, extravasation, distant invasion and immunosuppression, are obligatorily perpetrated through interactions of these tumor cells with the ECM. Cancer-related ECM changes can be exploited for the evaluation of disease progression, anticancer therapy development, and monitoring of therapy response. Thus, in breast cancer, hyaluronan-mediated wound repair mechanisms are hijacked to promote tumor development. Altered mechanical properties of the pancreatic cancer ECM are immunosuppressive and prevent the penetration of cytotoxic chemotherapy agents. The expression of the proteoglycan syndecan-4 is modulated by anticancer drugs, suggesting its potential druggabilty capacity. Another proteoglycan, lumican, is proposed as a cancer prognosis marker, chemoresistance regulator, and cancer therapy target. Due to their remodeling properties, the MMPs are vital mediators and important therapeutic targets. Treatment of breast cancer cells with sulfated hyaluronan has been shown to attenuate tumor cell growth, migration, and invasion. Extracellular vesicles (EVs), comprising exosomes, microvesicles, and apoptotic bodies, are released by all cells into the ECM and body fluids and can be utilized as diagnostic markers in malignant pleural mesothelioma. These exciting developments encourage tumor biology scientists for further creative research.

Listing 1 - 3 of 3
Sort by