Narrow your search
Listing 1 - 7 of 7
Sort by

Book
Mumford-Tate groups and domains : their geometry and arithmetic
Authors: --- ---
ISBN: 1280494654 9786613589880 1400842735 9781400842735 9780691154244 0691154244 9780691154251 0691154252 Year: 2012 Volume: 183 Publisher: Princeton : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Mumford-Tate groups are the fundamental symmetry groups of Hodge theory, a subject which rests at the center of contemporary complex algebraic geometry. This book is the first comprehensive exploration of Mumford-Tate groups and domains. Containing basic theory and a wealth of new views and results, it will become an essential resource for graduate students and researchers. Although Mumford-Tate groups can be defined for general structures, their theory and use to date has mainly been in the classical case of abelian varieties. While the book does examine this area, it focuses on the nonclassical case. The general theory turns out to be very rich, such as in the unexpected connections of finite dimensional and infinite dimensional representation theory of real, semisimple Lie groups. The authors give the complete classification of Hodge representations, a topic that should become a standard in the finite-dimensional representation theory of noncompact, real, semisimple Lie groups. They also indicate that in the future, a connection seems ready to be made between Lie groups that admit discrete series representations and the study of automorphic cohomology on "ients of Mumford-Tate domains by arithmetic groups. Bringing together complex geometry, representation theory, and arithmetic, this book opens up a fresh perspective on an important subject.


Book
Commensurabilities among Lattices in PU (1,n). (AM-132), Volume 132
Authors: ---
ISBN: 1400882516 Year: 2016 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The first part of this monograph is devoted to a characterization of hypergeometric-like functions, that is, twists of hypergeometric functions in n-variables. These are treated as an (n+1) dimensional vector space of multivalued locally holomorphic functions defined on the space of n+3 tuples of distinct points on the projective line P modulo, the diagonal section of Auto P=m. For n=1, the characterization may be regarded as a generalization of Riemann's classical theorem characterizing hypergeometric functions by their exponents at three singular points. This characterization permits the authors to compare monodromy groups corresponding to different parameters and to prove commensurability modulo inner automorphisms of PU(1,n). The book includes an investigation of elliptic and parabolic monodromy groups, as well as hyperbolic monodromy groups. The former play a role in the proof that a surprising number of lattices in PU(1,2) constructed as the fundamental groups of compact complex surfaces with constant holomorphic curvature are in fact conjugate to projective monodromy groups of hypergeometric functions. The characterization of hypergeometric-like functions by their exponents at the divisors "at infinity" permits one to prove generalizations in n-variables of the Kummer identities for n-1 involving quadratic and cubic changes of the variable.

Keywords

Hypergeometric functions. --- Monodromy groups. --- Lattice theory. --- Abuse of notation. --- Algebraic variety. --- Analytic continuation. --- Arithmetic group. --- Automorphism. --- Bernhard Riemann. --- Big O notation. --- Codimension. --- Coefficient. --- Cohomology. --- Commensurability (mathematics). --- Compactification (mathematics). --- Complete quadrangle. --- Complex number. --- Complex space. --- Conjugacy class. --- Connected component (graph theory). --- Coprime integers. --- Cube root. --- Derivative. --- Diagonal matrix. --- Differential equation. --- Dimension (vector space). --- Discrete group. --- Divisor (algebraic geometry). --- Divisor. --- Eigenvalues and eigenvectors. --- Ellipse. --- Elliptic curve. --- Equation. --- Existential quantification. --- Fiber bundle. --- Finite group. --- First principle. --- Fundamental group. --- Gelfand. --- Holomorphic function. --- Hypergeometric function. --- Hyperplane. --- Hypersurface. --- Integer. --- Inverse function. --- Irreducible component. --- Irreducible representation. --- Isolated point. --- Isomorphism class. --- Line bundle. --- Linear combination. --- Linear differential equation. --- Local coordinates. --- Local system. --- Locally finite collection. --- Mathematical proof. --- Minkowski space. --- Moduli space. --- Monodromy. --- Morphism. --- Multiplicative group. --- Neighbourhood (mathematics). --- Open set. --- Orbifold. --- Permutation. --- Picard group. --- Point at infinity. --- Polynomial ring. --- Projective line. --- Projective plane. --- Projective space. --- Root of unity. --- Second derivative. --- Simple group. --- Smoothness. --- Subgroup. --- Subset. --- Symmetry group. --- Tangent space. --- Tangent. --- Theorem. --- Transversal (geometry). --- Uniqueness theorem. --- Variable (mathematics). --- Vector space.


Book
Creating Symmetry : The Artful Mathematics of Wallpaper Patterns
Author:
Year: 2015 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This lavishly illustrated book provides a hands-on, step-by-step introduction to the intriguing mathematics of symmetry. Instead of breaking up patterns into blocks-a sort of potato-stamp method-Frank Farris offers a completely new waveform approach that enables you to create an endless variety of rosettes, friezes, and wallpaper patterns: dazzling art images where the beauty of nature meets the precision of mathematics.Featuring more than 100 stunning color illustrations and requiring only a modest background in math, Creating Symmetry begins by addressing the enigma of a simple curve, whose curious symmetry seems unexplained by its formula. Farris describes how complex numbers unlock the mystery, and how they lead to the next steps on an engaging path to constructing waveforms. He explains how to devise waveforms for each of the 17 possible wallpaper types, and then guides you through a host of other fascinating topics in symmetry, such as color-reversing patterns, three-color patterns, polyhedral symmetry, and hyperbolic symmetry. Along the way, Farris demonstrates how to marry waveforms with photographic images to construct beautiful symmetry patterns as he gradually familiarizes you with more advanced mathematics, including group theory, functional analysis, and partial differential equations. As you progress through the book, you'll learn how to create breathtaking art images of your own.Fun, accessible, and challenging, Creating Symmetry features numerous examples and exercises throughout, as well as engaging discussions of the history behind the mathematics presented in the book.

Keywords

Symmetry (Mathematics) --- Symmetry (Art) --- Abstract algebra. --- Addition. --- Algorithm. --- Antisymmetry. --- Arc length. --- Boundary value problem. --- Cartesian coordinate system. --- Circular motion. --- Circumference. --- Coefficient. --- Complex analysis. --- Complex multiplication. --- Complex number. --- Complex plane. --- Computation. --- Coordinate system. --- Coset. --- Cyclic group. --- Derivative. --- Diagonal. --- Diagram (category theory). --- Dihedral group. --- Division by zero. --- Domain coloring. --- Dot product. --- Eigenfunction. --- Eigenvalues and eigenvectors. --- Eisenstein integer. --- Epicycloid. --- Equation. --- Euler's formula. --- Even and odd functions. --- Exponential function. --- Fourier series. --- Frieze group. --- Function (mathematics). --- Function composition. --- Function space. --- Gaussian integer. --- Geometry. --- Glide reflection. --- Group (mathematics). --- Group theory. --- Homomorphism. --- Horocycle. --- Hyperbolic geometry. --- Ideal point. --- Integer. --- Lattice (group). --- Linear interpolation. --- Local symmetry. --- M. C. Escher. --- Main diagonal. --- Mathematical proof. --- Mathematical structure. --- Mathematics. --- Mirror symmetry (string theory). --- Mirror symmetry. --- Morphing. --- Natural number. --- Normal subgroup. --- Notation. --- Ordinary differential equation. --- Parallelogram. --- Parametric equation. --- Parametrization. --- Periodic function. --- Plane symmetry. --- Plane wave. --- Point group. --- Polynomial. --- Power series. --- Projection (linear algebra). --- Pythagorean triple. --- Quantity. --- Quotient group. --- Real number. --- Reciprocal lattice. --- Rectangle. --- Reflection symmetry. --- Right angle. --- Ring of integers. --- Rotational symmetry. --- Scientific notation. --- Special case. --- Square lattice. --- Subgroup. --- Summation. --- Symmetry group. --- Symmetry. --- Tetrahedron. --- Theorem. --- Translational symmetry. --- Trigonometric functions. --- Unique factorization domain. --- Unit circle. --- Variable (mathematics). --- Vector space. --- Wallpaper group. --- Wave packet. --- Abstract algebra. --- Addition. --- Algorithm. --- Antisymmetry. --- Arc length. --- Boundary value problem. --- Cartesian coordinate system. --- Circular motion. --- Circumference. --- Coefficient. --- Complex analysis. --- Complex multiplication. --- Complex number. --- Complex plane. --- Computation. --- Coordinate system. --- Coset. --- Cyclic group. --- Derivative. --- Diagonal. --- Diagram (category theory). --- Dihedral group. --- Division by zero. --- Domain coloring. --- Dot product. --- Eigenfunction. --- Eigenvalues and eigenvectors. --- Eisenstein integer. --- Epicycloid. --- Equation. --- Euler's formula. --- Even and odd functions. --- Exponential function. --- Fourier series. --- Frieze group. --- Function (mathematics). --- Function composition. --- Function space. --- Gaussian integer. --- Geometry. --- Glide reflection. --- Group (mathematics). --- Group theory. --- Homomorphism. --- Horocycle. --- Hyperbolic geometry. --- Ideal point. --- Integer. --- Lattice (group). --- Linear interpolation. --- Local symmetry. --- M. C. Escher. --- Main diagonal. --- Mathematical proof. --- Mathematical structure. --- Mathematics. --- Mirror symmetry (string theory). --- Mirror symmetry. --- Morphing. --- Natural number. --- Normal subgroup. --- Notation. --- Ordinary differential equation. --- Parallelogram. --- Parametric equation. --- Parametrization. --- Periodic function. --- Plane symmetry. --- Plane wave. --- Point group. --- Polynomial. --- Power series. --- Projection (linear algebra). --- Pythagorean triple. --- Quantity. --- Quotient group. --- Real number. --- Reciprocal lattice. --- Rectangle. --- Reflection symmetry. --- Right angle. --- Ring of integers. --- Rotational symmetry. --- Scientific notation. --- Special case. --- Square lattice. --- Subgroup. --- Summation. --- Symmetry group. --- Symmetry. --- Tetrahedron. --- Theorem. --- Translational symmetry. --- Trigonometric functions. --- Unique factorization domain. --- Unit circle. --- Variable (mathematics). --- Vector space. --- Wallpaper group. --- Wave packet.

Chemical applications of group theory
Author:
ISBN: 0471510947 9780471510949 Year: 1990 Publisher: New York : Wiley-Interscience,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Retains the easy-to-read format and informal flavor of the previous editions, and includes new material on the symmetric properties of extended arrays (crystals), projection operators, LCAO molecular orbitals, and electron counting rules. Also contains many new exercises and illustrations.

Keywords

Quantum chemistry --- fysicochemie --- Group theory --- Molecular theory --- Groupes, Théorie des --- Théorie moléculaire --- Molecular theory. --- 548.12 --- 512.54 --- 541.6 --- #WSCH:AAS2 --- Chemistry, Physical and theoretical --- Matter --- Groups, Theory of --- Substitutions (Mathematics) --- Algebra --- Theory of symmetry. Theory of original forms in general --- Groups. Group theory --- Chemical structure in general. Chemical structure in relation to properties of substances. Chemistry of high polymers --- Constitution --- Group theory. --- Theoretische chemie --- Chemistry --- Use of --- Groups (Mathematics) --- Crystallographic symmetry --- Determinants --- Hybrid orbitals --- Ligand field theory --- Molecular orbital theory --- Molecular symmetry --- Molecular vibrations --- Quantum mechanics --- Resonance integral --- 541.6 Chemical structure in general. Chemical structure in relation to properties of substances. Chemistry of high polymers --- 512.54 Groups. Group theory --- 548.12 Theory of symmetry. Theory of original forms in general --- Crystallographic symmetry. --- Determinants. --- Hybrid orbitals. --- Ligand field theory. --- Molecular orbital theory. --- Molecular symmetry. --- Molecular vibrations. --- Quantum mechanics. --- Resonance integral. --- Théorie des groupes --- Théorie des groupes --- Théorie moléculaire --- Molecular toxicology. --- Symmetry (Physics) --- Ligands. --- Molecular orbitals. --- Molecular structure. --- Crystallography, Mathematical. --- Symétrie (physique) --- Orbitales moléculaires. --- Théorie moléculaire. --- Structure moléculaire --- Chimie --- Groupes, Théorie des. --- Cristallographie mathématique. --- Mathematics. --- Mathématiques. --- Symmetry group


Book
Outer billiards on kites
Author:
ISBN: 1282458582 9786612458583 1400831970 9781400831975 0691142483 9780691142487 0691142491 9780691142494 9781282458581 6612458585 Year: 2009 Publisher: Princeton Princeton University Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

Outer billiards is a basic dynamical system defined relative to a convex shape in the plane. B. H. Neumann introduced this system in the 1950's, and J. Moser popularized it as a toy model for celestial mechanics. All along, the so-called Moser-Neumann question has been one of the central problems in the field. This question asks whether or not one can have an outer billiards system with an unbounded orbit. The Moser-Neumann question is an idealized version of the question of whether, because of small disturbances in its orbit, the Earth can break out of its orbit and fly away from the Sun. In Outer Billiards on Kites, Richard Schwartz presents his affirmative solution to the Moser-Neumann problem. He shows that an outer billiards system can have an unbounded orbit when defined relative to any irrational kite. A kite is a quadrilateral having a diagonal that is a line of bilateral symmetry. The kite is irrational if the other diagonal divides the quadrilateral into two triangles whose areas are not rationally related. In addition to solving the basic problem, Schwartz relates outer billiards on kites to such topics as Diophantine approximation, the modular group, self-similar sets, polytope exchange maps, profinite completions of the integers, and solenoids--connections that together allow for a fairly complete analysis of the dynamical system.

Keywords

Hyperbolic spaces. --- Singularities (Mathematics) --- Transformations (Mathematics) --- Geometry, Plane. --- Plane geometry --- Algorithms --- Differential invariants --- Geometry, Differential --- Geometry, Algebraic --- Hyperbolic complex manifolds --- Manifolds, Hyperbolic complex --- Spaces, Hyperbolic --- Geometry, Non-Euclidean --- Abelian group. --- Automorphism. --- Big O notation. --- Bijection. --- Binary number. --- Bisection. --- Borel set. --- C0. --- Calculation. --- Cantor set. --- Cartesian coordinate system. --- Combination. --- Compass-and-straightedge construction. --- Congruence subgroup. --- Conjecture. --- Conjugacy class. --- Continuity equation. --- Convex lattice polytope. --- Convex polytope. --- Coprime integers. --- Counterexample. --- Cyclic group. --- Diameter. --- Diophantine approximation. --- Diophantine equation. --- Disjoint sets. --- Disjoint union. --- Division by zero. --- Embedding. --- Equation. --- Equivalence class. --- Ergodic theory. --- Ergodicity. --- Factorial. --- Fiber bundle. --- Fibonacci number. --- Fundamental domain. --- Gauss map. --- Geometry. --- Half-integer. --- Homeomorphism. --- Hyperbolic geometry. --- Hyperplane. --- Ideal triangle. --- Intersection (set theory). --- Interval exchange transformation. --- Inverse function. --- Inverse limit. --- Isometry group. --- Lattice (group). --- Limit set. --- Line segment. --- Linear algebra. --- Linear function. --- Line–line intersection. --- Main diagonal. --- Modular group. --- Monotonic function. --- Multiple (mathematics). --- Orthant. --- Outer billiard. --- Parallelogram. --- Parameter. --- Partial derivative. --- Penrose tiling. --- Permutation. --- Piecewise. --- Polygon. --- Polyhedron. --- Polytope. --- Product topology. --- Projective geometry. --- Rectangle. --- Renormalization. --- Rhombus. --- Right angle. --- Rotational symmetry. --- Sanity check. --- Scientific notation. --- Semicircle. --- Sign (mathematics). --- Special case. --- Square root of 2. --- Subsequence. --- Summation. --- Symbolic dynamics. --- Symmetry group. --- Tangent. --- Tetrahedron. --- Theorem. --- Toy model. --- Translational symmetry. --- Trapezoid. --- Triangle group. --- Triangle inequality. --- Two-dimensional space. --- Upper and lower bounds. --- Upper half-plane. --- Without loss of generality. --- Yair Minsky.


Book
The story of proof : logic and the history of mathematics
Author:
ISBN: 069123437X 9780691234373 Year: 2022 Publisher: Princeton, New Jersey : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

How the concept of proof has enabled the creation of mathematical knowledgeThe Story of Proof investigates the evolution of the concept of proof—one of the most significant and defining features of mathematical thought—through critical episodes in its history. From the Pythagorean theorem to modern times, and across all major mathematical disciplines, John Stillwell demonstrates that proof is a mathematically vital concept, inspiring innovation and playing a critical role in generating knowledge.Stillwell begins with Euclid and his influence on the development of geometry and its methods of proof, followed by algebra, which began as a self-contained discipline but later came to rival geometry in its mathematical impact. In particular, the infinite processes of calculus were at first viewed as “infinitesimal algebra,” and calculus became an arena for algebraic, computational proofs rather than axiomatic proofs in the style of Euclid. Stillwell proceeds to the areas of number theory, non-Euclidean geometry, topology, and logic, and peers into the deep chasm between natural number arithmetic and the real numbers. In its depths, Cantor, Gödel, Turing, and others found that the concept of proof is ultimately part of arithmetic. This startling fact imposes fundamental limits on what theorems can be proved and what problems can be solved.Shedding light on the workings of mathematics at its most fundamental levels, The Story of Proof offers a compelling new perspective on the field’s power and progress.

Keywords

Proof theory. --- Mathematicians. --- Scientists --- Logic, Symbolic and mathematical --- Accuracy and precision. --- Addition. --- Aleph number. --- Algorithm. --- Analogy. --- Analysis. --- Archimedean property. --- Associative property. --- Axiom of choice. --- Axiom schema. --- Axiom. --- Bijection. --- Calculation. --- Certainty. --- Coefficient. --- Commutative property. --- Computability theory. --- Computability. --- Computable function. --- Computation. --- Constructible number. --- Constructive analysis. --- Continuous function (set theory). --- Corollary. --- Countable set. --- Credential. --- Dedekind cut. --- Desargues's theorem. --- Determinant. --- Direct proof. --- Equation. --- Equinumerosity. --- Estimation. --- Estimator. --- Extreme value theorem. --- Fundamental theorem. --- Gentzen's consistency proof. --- Geometry. --- Hypotenuse. --- Hypothesis. --- Identifiability. --- Inference. --- Infimum and supremum. --- Infinitesimal. --- Intermediate value theorem. --- Intuitionism. --- Logic. --- Logical connective. --- Mathematical induction. --- Mathematician. --- Mathematics. --- Maximal element. --- Natural number. --- Number theory. --- Obstacle. --- Ordinal number. --- Peano axioms. --- Permutation group. --- Permutation. --- Planarity. --- Playfair's axiom. --- Polygon. --- Polynomial. --- Power set. --- Predicate logic. --- Prediction. --- Prime factor. --- Prime number. --- Proof by infinite descent. --- Pythagorean theorem. --- Quantifier (logic). --- Quantity. --- Quaternion. --- Quintic function. --- Rational number. --- Real number. --- Reason. --- Recursively enumerable set. --- Rule of inference. --- Satisfiability. --- Self-reference. --- Sequence. --- Set theory. --- Special case. --- Staffing. --- Subsequence. --- Subset. --- Summation. --- Symbolic computation. --- Symmetry group. --- Theorem. --- Theory. --- Total order. --- Truth value. --- Turing machine. --- Unit square. --- Vector space. --- Well-order. --- Zorn's lemma.


Book
Current Trends in Symmetric Polynomials with their Applications
Author:
ISBN: 303921621X 3039216201 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue presents research papers on various topics within many different branches of mathematics, applied mathematics, and mathematical physics. Each paper presents mathematical theories, methods, and their application based on current and recently developed symmetric polynomials. Also, each one aims to provide the full understanding of current research problems, theories, and applications on the chosen topics and includes the most recent advances made in the area of symmetric functions and polynomials.

Keywords

generalized Laguerre --- central complete Bell numbers --- rational polynomials --- Changhee polynomials of type two --- Euler polynomials --- generalized Laguerre polynomials --- Hermite --- conjecture --- Legendre --- the degenerate gamma function --- trivariate Lucas polynomials --- perfectly matched layer --- third-order character --- Euler numbers --- two variable q-Berstein operator --- entropy production --- hypergeometric function --- q-Bernoulli numbers --- q-Bernoulli polynomials --- symmetry group --- Bernoulli polynomials --- Fibonacci polynomials --- central incomplete Bell polynomials --- Chebyshev polynomials --- convolution sums --- Lucas polynomials --- Jacobi --- the modified degenerate Laplace transform --- q-Volkenborn integral on ?p --- and fourth kinds --- two variable q-Berstein polynomial --- the modified degenerate gamma function --- two variable q-Bernstein operators --- reduction method --- identity --- elementary and combinatorial methods --- generalized Bernoulli polynomials and numbers attached to a Dirichlet character ? --- explicit relations --- recursive sequence --- Fubini polynomials --- p-adic integral on ?p --- generating functions --- q-Euler number --- acoustic wave equation --- congruence --- trivariate Fibonacci polynomials --- stochastic thermodynamics --- fermionic p-adic integrals --- Laguerre polynomials --- fluctuation theorem --- Bernoulli numbers and polynomials --- w-torsion Fubini polynomials --- non-equilibrium free energy --- hypergeometric functions 1F1 and 2F1 --- recursive formula --- Chebyshev polynomials of the first --- second --- central complete Bell polynomials --- Apostol-type Frobenius–Euler polynomials --- sums of finite products --- q-Euler polynomial --- symmetric identities --- stability --- fermionic p-adic q-integral on ?p --- Gegenbauer polynomials --- continued fraction --- thermodynamics of information --- well-posedness --- fermionic p-adic integral on ?p --- catalan numbers --- classical Gauss sums --- three-variable Hermite polynomials --- q-Changhee polynomials --- Catalan numbers --- two variable q-Bernstein polynomials --- q-Euler polynomials --- analytic method --- representation --- mutual information --- Fibonacci --- Legendre polynomials --- Gegenbauer --- generalized Bernoulli polynomials and numbers of arbitrary complex order --- Lucas --- elementary method --- new sequence --- third --- the degenerate Laplace transform --- computational formula --- operational connection --- sums of finite products of Chebyshev polynomials of the third and fourth kinds --- Changhee polynomials --- linear form in logarithms

Listing 1 - 7 of 7
Sort by