Listing 1 - 10 of 12 | << page >> |
Sort by
|
Choose an application
Switchgrass --- Seasonal variations --- Genetics
Choose an application
Feedstock --- Switchgrass --- Research --- Genetics
Choose an application
This book contains the most comprehensive reviews on the latest development of switchgrass research including the agronomy of the plant, the use of endophytes and mycorrhizae for biomass production, genetics and breeding of bioenergy related traits, molecular genetics and molecular breeding, genomics, transgenics, processing, bioconversion, biosystem and chemical engineering, biomass production modeling, economics of switchgrass feedstock production etc. The book will be of interest and great value to the switchgrass research communities in both academia and industry and a handbook for agro
Switchgrass --- Energy crops. --- Genetic engineering. --- Breeding.
Choose an application
Energy crops --- Biomass energy --- Renewable energy sources --- Land use --- Crops and climate --- Agriculture and energy --- Switchgrass --- Energy policy --- Government policy --- Economic aspects --- Environmental aspects
Choose an application
The demand of renewable energies is growing steadily both from policy and from industry which seeks environmentally friendly feed stocks. The recent policies enacted by the EU, USA and other industrialized countries foresee an increased interest in the cultivation of energy crops; there is clear evidence that switchgrass is one of the most promising biomass crop for energy production and bio-based economy and compounds. Switchgrass: A Valuable Biomass Crop for Energy provides a comprehensive guide to switchgrass in terms of agricultural practices, potential use and markets, and environmental and social benefits. Considering this potential energy source from its biology, breed and crop physiology to its growth and management to the economical, social and environmental impacts, Switchgrass: A Valuable Biomass Crop for Energy brings together chapters from a range of experts in the field, including a foreword from Kenneth P. Vogel, to collect and present the environmental benefits and characteristics of this a crop whit the potential to mitigate the risks of global warming by replacing fossil fuels. Including clear figures and tables to support discussions, Switchgrass: A Valuable Biomass Crop for Energy provides a solid reference for anyone with interest or investment in the development of bioenergy; researchers policy makers and stakeholders will find this a key resource.
Biomass energy. --- Energy crops. --- Switchgrass. --- Switchgrass --- Energy crops --- Biomass energy --- Mechanical Engineering --- Agriculture --- Engineering & Applied Sciences --- Earth & Environmental Sciences --- Bioengineering --- Plant Sciences --- Mechanical Engineering - General --- Bio-energy (Biomass energy) --- Bioenergy (Biomass energy) --- Biofuels --- Biological fuels --- Energy, Biomass --- Microbial energy conversion --- Old switch panic grass --- Panic grass, Old switch --- Panic grass, Tall --- Panicum virgatum --- Prairie switchgrass --- Switch grass --- Tall panic grass --- Engineering. --- Renewable energy resources. --- Agriculture. --- Renewable energy sources. --- Alternate energy sources. --- Green energy industries. --- Sustainable development. --- Renewable and Green Energy. --- Sustainable Development. --- Development, Sustainable --- Ecologically sustainable development --- Economic development, Sustainable --- Economic sustainability --- ESD (Ecologically sustainable development) --- Smart growth --- Sustainable development --- Sustainable economic development --- Economic development --- Green energy industries --- Energy industries --- Alternate energy sources --- Alternative energy sources --- Energy sources, Renewable --- Sustainable energy sources --- Power resources --- Renewable natural resources --- Agriculture and energy --- Farming --- Husbandry --- Industrial arts --- Life sciences --- Food supply --- Land use, Rural --- Construction --- Technology --- Environmental aspects --- Energy conversion --- Fuel --- Microbial fuel cells --- Refuse as fuel --- Waste products as fuel --- Panicum
Choose an application
Woody biomass is most widely used for energy production. In the United States, roughly 2% of the energy consumed annually is generated from wood and wood-derived fuels. Woody biomass needs to be preprocessed and pretreated before it is used for energy production. Preprocessing and pretreatments improve the physical, chemical, and rheological properties, making them more suitable for feeding, handling, storage transportation, and conversion. Mechanical preprocessing technologies such as size reduction and densification, help improve particle size distribution and density. Thermal pretreatment can reduce grinding energy and torrefied ground biomass has improved sphericity, particle surface area, and particle size distribution. This book focuses on several specific topics, such as understanding how forest biomass for biofuels impacts greenhouse gas emissions; mechanical preprocessing, such as densification of forest residue biomass, to improve physical properties such as size, shape, and density; the impact of thermal pretreatment temperatures on woody biomass chemical composition, physical properties, and microstructure for thermochemical conversions such as pyrolysis and gasification; the grindability of torrefied pellets; use of wood for gasification and as a filter for tar removal; and understanding the pyrolysis kinetics of biomass using thermogravimetric analyzers.
History of engineering & technology --- grindability --- torrefied biomass --- pellet --- energy consumption --- co-firing --- biomass --- gasification --- tar --- syngas cleaning --- dry filter --- pyrolysis --- chemical composition --- micro-structure --- physical properties --- scanning electron microscopy --- wood --- thermal pretreatment --- torrefaction --- timber --- harvest residues --- ethanol --- GHG savings --- Michigan --- variety and rootstock selection --- almond tree --- agricultural practices --- halophytes --- Phoenix dactylifera --- Salicornia bigelovii --- thermogravimetric analysis --- torrefied biomass --- correlation --- ultimate analysis --- solid yield --- heating value --- OLS --- 2-inch top pine residue + switchgrass blends --- pelleting process variables --- pellet quality --- specific energy consumption --- response surface models --- hybrid genetic algorithm --- pelleting --- functional groups --- pellet strength --- combustion efficiency --- forest biomass --- Australia --- biomass energy potential --- emission --- bioenergy
Choose an application
Woody biomass is most widely used for energy production. In the United States, roughly 2% of the energy consumed annually is generated from wood and wood-derived fuels. Woody biomass needs to be preprocessed and pretreated before it is used for energy production. Preprocessing and pretreatments improve the physical, chemical, and rheological properties, making them more suitable for feeding, handling, storage transportation, and conversion. Mechanical preprocessing technologies such as size reduction and densification, help improve particle size distribution and density. Thermal pretreatment can reduce grinding energy and torrefied ground biomass has improved sphericity, particle surface area, and particle size distribution. This book focuses on several specific topics, such as understanding how forest biomass for biofuels impacts greenhouse gas emissions; mechanical preprocessing, such as densification of forest residue biomass, to improve physical properties such as size, shape, and density; the impact of thermal pretreatment temperatures on woody biomass chemical composition, physical properties, and microstructure for thermochemical conversions such as pyrolysis and gasification; the grindability of torrefied pellets; use of wood for gasification and as a filter for tar removal; and understanding the pyrolysis kinetics of biomass using thermogravimetric analyzers.
grindability --- torrefied biomass --- pellet --- energy consumption --- co-firing --- biomass --- gasification --- tar --- syngas cleaning --- dry filter --- pyrolysis --- chemical composition --- micro-structure --- physical properties --- scanning electron microscopy --- wood --- thermal pretreatment --- torrefaction --- timber --- harvest residues --- ethanol --- GHG savings --- Michigan --- variety and rootstock selection --- almond tree --- agricultural practices --- halophytes --- Phoenix dactylifera --- Salicornia bigelovii --- thermogravimetric analysis --- torrefied biomass --- correlation --- ultimate analysis --- solid yield --- heating value --- OLS --- 2-inch top pine residue + switchgrass blends --- pelleting process variables --- pellet quality --- specific energy consumption --- response surface models --- hybrid genetic algorithm --- pelleting --- functional groups --- pellet strength --- combustion efficiency --- forest biomass --- Australia --- biomass energy potential --- emission --- bioenergy
Choose an application
Woody biomass is most widely used for energy production. In the United States, roughly 2% of the energy consumed annually is generated from wood and wood-derived fuels. Woody biomass needs to be preprocessed and pretreated before it is used for energy production. Preprocessing and pretreatments improve the physical, chemical, and rheological properties, making them more suitable for feeding, handling, storage transportation, and conversion. Mechanical preprocessing technologies such as size reduction and densification, help improve particle size distribution and density. Thermal pretreatment can reduce grinding energy and torrefied ground biomass has improved sphericity, particle surface area, and particle size distribution. This book focuses on several specific topics, such as understanding how forest biomass for biofuels impacts greenhouse gas emissions; mechanical preprocessing, such as densification of forest residue biomass, to improve physical properties such as size, shape, and density; the impact of thermal pretreatment temperatures on woody biomass chemical composition, physical properties, and microstructure for thermochemical conversions such as pyrolysis and gasification; the grindability of torrefied pellets; use of wood for gasification and as a filter for tar removal; and understanding the pyrolysis kinetics of biomass using thermogravimetric analyzers.
History of engineering & technology --- grindability --- torrefied biomass --- pellet --- energy consumption --- co-firing --- biomass --- gasification --- tar --- syngas cleaning --- dry filter --- pyrolysis --- chemical composition --- micro-structure --- physical properties --- scanning electron microscopy --- wood --- thermal pretreatment --- torrefaction --- timber --- harvest residues --- ethanol --- GHG savings --- Michigan --- variety and rootstock selection --- almond tree --- agricultural practices --- halophytes --- Phoenix dactylifera --- Salicornia bigelovii --- thermogravimetric analysis --- torrefied biomass --- correlation --- ultimate analysis --- solid yield --- heating value --- OLS --- 2-inch top pine residue + switchgrass blends --- pelleting process variables --- pellet quality --- specific energy consumption --- response surface models --- hybrid genetic algorithm --- pelleting --- functional groups --- pellet strength --- combustion efficiency --- forest biomass --- Australia --- biomass energy potential --- emission --- bioenergy
Choose an application
This Special Issue provides 15 research articles and 4 comprehensive review articles on various aspects of plant–metal/metalloid interactions. - Up-to-date information on plant responses to metals/metalloids are published. - Various mechanisms of plant tolerance to metals’/metalloids’ toxicity are presented. - Exogenous applications of mitigating metals’/metalloids’ toxicity are discussed. - Sustainable technologies in growing plants in metal/metalloid-contaminated environments are discussed. - Phytoremediation techniques for the remediation of metals/metalloids are discussed.
Research & information: general --- Biology, life sciences --- Botany & plant sciences --- metal stress --- toxicity --- silicon --- Si-fertilization --- genomics --- transporter genes --- cadmium toxicity --- oxidative stress --- antioxidative defense system --- photosynthetic pigments --- environmental pollution --- phytoextraction --- cadmium --- biostimulation --- oxidative damage --- metal toxicity --- sulphur nutrition --- stress mitigation --- cation exchange capacity --- glutathione --- agriculture --- Cd stress --- environmental --- gene expression --- PGPB --- switchgrass --- P. fasciculatum --- heavy metals --- tolerant plant --- protein carbonylation --- photosynthesis proteins --- mining soils --- thiols --- phenolic metabolites --- organic acids --- lead --- castor beans --- citric acid --- antioxidant enzyme --- antioxidant system --- ethylene --- glyoxalase system --- photosynthesis --- proline metabolism --- zinc --- jute varieties --- copper stress --- phytoremediation --- bioaccumulation factor --- translocation factor --- growth --- copper toxicity --- micronutrient deficiency --- iron --- nicotianamine --- histidine --- Cu-chelation --- lead pollution --- antioxidants --- bentonite --- grain biochemistry --- biochar --- maize hybrids --- nickel --- nutrients --- translocation --- heavy metal --- reactive oxygen species --- oxidative burst --- Rhododendron arboreum --- Vigna radiata --- enzymes activity --- chromium (Cr) --- polyphenols --- abiotic stress --- antioxidant defense --- methylglyoxal --- organic acid --- ripening physiology --- silver --- chemical elicitors --- chili --- fibrous crop --- environmental pollutants --- morphological traits --- soil remediation --- chelating agents --- chromium --- wastewater --- sunflower --- biomass --- chlorophyll contents
Choose an application
This Special Issue provides 15 research articles and 4 comprehensive review articles on various aspects of plant–metal/metalloid interactions. - Up-to-date information on plant responses to metals/metalloids are published. - Various mechanisms of plant tolerance to metals’/metalloids’ toxicity are presented. - Exogenous applications of mitigating metals’/metalloids’ toxicity are discussed. - Sustainable technologies in growing plants in metal/metalloid-contaminated environments are discussed. - Phytoremediation techniques for the remediation of metals/metalloids are discussed.
metal stress --- toxicity --- silicon --- Si-fertilization --- genomics --- transporter genes --- cadmium toxicity --- oxidative stress --- antioxidative defense system --- photosynthetic pigments --- environmental pollution --- phytoextraction --- cadmium --- biostimulation --- oxidative damage --- metal toxicity --- sulphur nutrition --- stress mitigation --- cation exchange capacity --- glutathione --- agriculture --- Cd stress --- environmental --- gene expression --- PGPB --- switchgrass --- P. fasciculatum --- heavy metals --- tolerant plant --- protein carbonylation --- photosynthesis proteins --- mining soils --- thiols --- phenolic metabolites --- organic acids --- lead --- castor beans --- citric acid --- antioxidant enzyme --- antioxidant system --- ethylene --- glyoxalase system --- photosynthesis --- proline metabolism --- zinc --- jute varieties --- copper stress --- phytoremediation --- bioaccumulation factor --- translocation factor --- growth --- copper toxicity --- micronutrient deficiency --- iron --- nicotianamine --- histidine --- Cu-chelation --- lead pollution --- antioxidants --- bentonite --- grain biochemistry --- biochar --- maize hybrids --- nickel --- nutrients --- translocation --- heavy metal --- reactive oxygen species --- oxidative burst --- Rhododendron arboreum --- Vigna radiata --- enzymes activity --- chromium (Cr) --- polyphenols --- abiotic stress --- antioxidant defense --- methylglyoxal --- organic acid --- ripening physiology --- silver --- chemical elicitors --- chili --- fibrous crop --- environmental pollutants --- morphological traits --- soil remediation --- chelating agents --- chromium --- wastewater --- sunflower --- biomass --- chlorophyll contents
Listing 1 - 10 of 12 | << page >> |
Sort by
|