Narrow your search

Library

FARO (6)

KU Leuven (6)

LUCA School of Arts (6)

Odisee (6)

Thomas More Kempen (6)

Thomas More Mechelen (6)

UCLL (6)

ULiège (6)

VIVES (6)

Vlaams Parlement (6)

More...

Resource type

book (13)


Language

English (13)


Year
From To Submit

2022 (2)

2021 (3)

2020 (6)

2019 (1)

2018 (1)

Listing 1 - 10 of 13 << page
of 2
>>
Sort by

Book
Active and Passive Plasmonic Devices for Optical Communications
Author:
ISBN: 1000051316 3731504634 Year: 2018 Publisher: KIT Scientific Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

A short introduction to the theory of surface plasmon polaritons (SPPs) is given. The application of the SPPs in on-chip signal processing is discussed. In particular, two concepts of plasmonic modulators are reported, wherein the SPPs are modulated by 40 Gbit/s electrical signals. Phase and Mach-Zehnder modulators employing the Pockels effect in electro-optic organic materials are discussed. A few micro-meter long SPP absorption modulator based on a thin layer of indium-tin-oxide is reported.


Book
Engineering Metamaterials
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

A couple of decades have passed since the advent of electromagnetic metamaterials. Although the research on artificial microwave materials dates back to the middle of the 20th century, the most prominent development in the electromagnetics of artificial media has happened in the new millennium. In the last decade, the electromagnetics of one-, two-, and three-dimensional metamaterials acquired robust characterization and design tools. Novel fabrication techniques have been developed. Many exotic effects involving metamaterials and metasurfaces, which initially belonged in a scientist’s lab, are now well understood by practicing engineers. Therefore, it is the right time for the metamaterial concepts to become a designer’s tools of choice in the landscape of electronics, microwaves, and photonics. Answering such a demand, the book “Engineering Metamaterials” focuses on the theory and applications of electromagnetic metamaterials, metasurfaces, and metamaterial transmission lines as the building blocks of present-day and future electronic, photonic, and microwave devices.

Keywords

History of engineering & technology --- evanescent field tunneling --- metamaterials --- mu-negative material --- epsilon-negative material --- split-ring-resonators --- waveguides --- spoof surface plasmon polariton (SSPP) --- metal hole arrays (MHA) --- electromagnetic distortion --- two-dimensional imaging --- common-mode noise --- corrugated ground plane --- differential signaling --- electromagnetic bandgap --- metamaterial --- stepped impedance --- metasurfaces --- linear to circular polarization converter --- dual-band polarization converters --- transmission-based polarization conversion --- dual-band --- fractals --- microwave absorbers --- UHF-RFID --- left-handed line --- sensors --- phase shift --- terahertz metamaterials --- graphene --- encoder --- active control --- evanescent field tunneling --- metamaterials --- mu-negative material --- epsilon-negative material --- split-ring-resonators --- waveguides --- spoof surface plasmon polariton (SSPP) --- metal hole arrays (MHA) --- electromagnetic distortion --- two-dimensional imaging --- common-mode noise --- corrugated ground plane --- differential signaling --- electromagnetic bandgap --- metamaterial --- stepped impedance --- metasurfaces --- linear to circular polarization converter --- dual-band polarization converters --- transmission-based polarization conversion --- dual-band --- fractals --- microwave absorbers --- UHF-RFID --- left-handed line --- sensors --- phase shift --- terahertz metamaterials --- graphene --- encoder --- active control


Book
Application of Novel Plasmonic Nanomaterials on SERS
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Surface-enhanced Raman scattering (SERS) is a research technique that was discovered in the mid-1970s. SERS is a powerful and fast tool for analysis, which has a high detection sensitivity for a great number of chemical and biological molecules. However, it is in this last decade that a very significant explosion of the fabrication of highly sensitive SERS substrates has occurred using novel designs of plasmonic nanostructures and novel fabrication techniques of the latter, as well as new plasmonic materials and hybrid nanomaterials. Thus, this Special Issue is dedicated to reporting on the latest advances in novel plasmonic nanomaterials that are applied to the SERS domain. These developments are illustrated through several articles and reviews written by researchers in this field from around the world.

Keywords

Research & information: general --- pulsed laser ablation --- acetonitrile (CH3CN) --- Cu/gCN hybrids --- localized surface plasmon resonance (LSPR) --- surface enhanced Raman scattering (SERS) --- surface enhanced resonance Raman scattering (SERRS) --- silver aggregates --- laser-induced synthesis --- surface-enhanced Raman scattering --- hot spots --- SERS --- sensors --- plasmonics --- gold --- silicon --- surface-enhanced Raman scattering (SERS) --- surface plasmon polariton (SPP) --- surface plasmon resonance (SPR) --- nanograting --- nanofabrication --- electron beam lithography --- zinc oxide --- metal oxides --- self-assembly --- bimetallic nanoparticles --- localized surface plasmon --- surface enhanced Raman scattering --- grating effect --- gold nanodisks --- Rayleigh anomaly --- pulsed laser ablation --- acetonitrile (CH3CN) --- Cu/gCN hybrids --- localized surface plasmon resonance (LSPR) --- surface enhanced Raman scattering (SERS) --- surface enhanced resonance Raman scattering (SERRS) --- silver aggregates --- laser-induced synthesis --- surface-enhanced Raman scattering --- hot spots --- SERS --- sensors --- plasmonics --- gold --- silicon --- surface-enhanced Raman scattering (SERS) --- surface plasmon polariton (SPP) --- surface plasmon resonance (SPR) --- nanograting --- nanofabrication --- electron beam lithography --- zinc oxide --- metal oxides --- self-assembly --- bimetallic nanoparticles --- localized surface plasmon --- surface enhanced Raman scattering --- grating effect --- gold nanodisks --- Rayleigh anomaly


Book
Engineering Metamaterials
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

A couple of decades have passed since the advent of electromagnetic metamaterials. Although the research on artificial microwave materials dates back to the middle of the 20th century, the most prominent development in the electromagnetics of artificial media has happened in the new millennium. In the last decade, the electromagnetics of one-, two-, and three-dimensional metamaterials acquired robust characterization and design tools. Novel fabrication techniques have been developed. Many exotic effects involving metamaterials and metasurfaces, which initially belonged in a scientist’s lab, are now well understood by practicing engineers. Therefore, it is the right time for the metamaterial concepts to become a designer’s tools of choice in the landscape of electronics, microwaves, and photonics. Answering such a demand, the book “Engineering Metamaterials” focuses on the theory and applications of electromagnetic metamaterials, metasurfaces, and metamaterial transmission lines as the building blocks of present-day and future electronic, photonic, and microwave devices.


Book
Engineering Metamaterials
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

A couple of decades have passed since the advent of electromagnetic metamaterials. Although the research on artificial microwave materials dates back to the middle of the 20th century, the most prominent development in the electromagnetics of artificial media has happened in the new millennium. In the last decade, the electromagnetics of one-, two-, and three-dimensional metamaterials acquired robust characterization and design tools. Novel fabrication techniques have been developed. Many exotic effects involving metamaterials and metasurfaces, which initially belonged in a scientist’s lab, are now well understood by practicing engineers. Therefore, it is the right time for the metamaterial concepts to become a designer’s tools of choice in the landscape of electronics, microwaves, and photonics. Answering such a demand, the book “Engineering Metamaterials” focuses on the theory and applications of electromagnetic metamaterials, metasurfaces, and metamaterial transmission lines as the building blocks of present-day and future electronic, photonic, and microwave devices.


Book
Application of Novel Plasmonic Nanomaterials on SERS
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Surface-enhanced Raman scattering (SERS) is a research technique that was discovered in the mid-1970s. SERS is a powerful and fast tool for analysis, which has a high detection sensitivity for a great number of chemical and biological molecules. However, it is in this last decade that a very significant explosion of the fabrication of highly sensitive SERS substrates has occurred using novel designs of plasmonic nanostructures and novel fabrication techniques of the latter, as well as new plasmonic materials and hybrid nanomaterials. Thus, this Special Issue is dedicated to reporting on the latest advances in novel plasmonic nanomaterials that are applied to the SERS domain. These developments are illustrated through several articles and reviews written by researchers in this field from around the world.


Book
Flexible Electronics: Fabrication and Ubiquitous Integration
Author:
ISBN: 3038978299 3038978280 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Flexible Electronics platforms are increasingly used in the fields of sensors, displays, and energy conversion with the ultimate goal of facilitating their ubiquitous integration in our daily lives. Some of the key advantages associated with flexible electronic platforms are: bendability, lightweight, elastic, conformally shaped, nonbreakable, roll-to-roll manufacturable, and large-area. To realize their full potential, however, it is necessary to develop new methods for the fabrication of multifunctional flexible electronics at a reduced cost and with an increased resistance to mechanical fatigue. Accordingly, this Special Issue seeks to showcase short communications, research papers, and review articles that focus on novel methodological development for the fabrication, and integration of flexible electronics in healthcare, environmental monitoring, displays and human-machine interactivity, robotics, communication and wireless networks, and energy conversion, management, and storage.


Book
Application of Novel Plasmonic Nanomaterials on SERS
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Surface-enhanced Raman scattering (SERS) is a research technique that was discovered in the mid-1970s. SERS is a powerful and fast tool for analysis, which has a high detection sensitivity for a great number of chemical and biological molecules. However, it is in this last decade that a very significant explosion of the fabrication of highly sensitive SERS substrates has occurred using novel designs of plasmonic nanostructures and novel fabrication techniques of the latter, as well as new plasmonic materials and hybrid nanomaterials. Thus, this Special Issue is dedicated to reporting on the latest advances in novel plasmonic nanomaterials that are applied to the SERS domain. These developments are illustrated through several articles and reviews written by researchers in this field from around the world.


Book
Electrical and Electro-Optical Biosensors
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Electrical and electro-optical biosensing technologies are critical to the development of innovative POCT devices, which can be used by both professional and untrained personnel for the provision of necessary health information within a short time for medical decisions to be determined, being especially important in an era of global pandemics. This Special Issue includes a few pioneering works concerning biosensors utilizing electrochemical impedance, localized surface plasmon resonance, and the bioelectricity of sensing materials in which the amount of analyte is pertinent to the signal response. The presented results demonstrate the potential of these label-free biosensing approaches in the detection of disease-related small-molecule metabolites, proteins, and whole-cell entities.


Book
Electrical and Electro-Optical Biosensors
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Electrical and electro-optical biosensing technologies are critical to the development of innovative POCT devices, which can be used by both professional and untrained personnel for the provision of necessary health information within a short time for medical decisions to be determined, being especially important in an era of global pandemics. This Special Issue includes a few pioneering works concerning biosensors utilizing electrochemical impedance, localized surface plasmon resonance, and the bioelectricity of sensing materials in which the amount of analyte is pertinent to the signal response. The presented results demonstrate the potential of these label-free biosensing approaches in the detection of disease-related small-molecule metabolites, proteins, and whole-cell entities.

Keywords

Research & information: general --- Biology, life sciences --- Biochemistry --- printed circuit board --- sensor electrode --- electrochemical sensor --- printed biosensors --- printing technologies --- electrochemistry --- point-of-care --- ovarian cancer --- nanowire biosensor --- nanowire --- silicon-on-insulator --- CA 125 --- antibodies --- liquid crystal --- photopolymer --- UV exposure --- bovine serum albumin --- protein assay --- dielectric spectroscopy --- lyotropic chromonic liquid crystal --- label-free biosensor --- optical biosensor --- immunoassay --- transmission spectrometry --- spoof localized surface plasmon polariton --- sensor --- glucose solution --- millimeter wave --- metamaterial --- spin-coating --- single-substrate --- cancer biomarker CA125 --- dengue virus --- dengue serotype --- mosquito-borne viral disease --- virus detection --- electrochemical impedance spectroscopy --- cancer cells --- dielectrophoresis --- crossover frequency --- electrical impedance spectroscopy --- printed circuit board --- sensor electrode --- electrochemical sensor --- printed biosensors --- printing technologies --- electrochemistry --- point-of-care --- ovarian cancer --- nanowire biosensor --- nanowire --- silicon-on-insulator --- CA 125 --- antibodies --- liquid crystal --- photopolymer --- UV exposure --- bovine serum albumin --- protein assay --- dielectric spectroscopy --- lyotropic chromonic liquid crystal --- label-free biosensor --- optical biosensor --- immunoassay --- transmission spectrometry --- spoof localized surface plasmon polariton --- sensor --- glucose solution --- millimeter wave --- metamaterial --- spin-coating --- single-substrate --- cancer biomarker CA125 --- dengue virus --- dengue serotype --- mosquito-borne viral disease --- virus detection --- electrochemical impedance spectroscopy --- cancer cells --- dielectrophoresis --- crossover frequency --- electrical impedance spectroscopy

Listing 1 - 10 of 13 << page
of 2
>>
Sort by