Listing 1 - 9 of 9 |
Sort by
|
Choose an application
Albedo is a known and documented phenomenon, defined as the reflectivity of a surface, i.e., the ratio of reflected light energy to incident light energy. It is a dimensionless quantity, used in particular in agro-forestry, urban environment, cryosphere and geology. It is an Essential Climate Variable (ECV), deemed extremely meaningful to compute the earth heat balance. The albedo of natural surfaces varies largely, especially in the visible, with the lowest values found for water bodies and dense vegetation canopies and the highest values for desert and snow. It also changes with the angular distribution and spectral composition of the incident radiation and with the surface moisture. Satellite observations allow consistent measuring of the surface albedo at continental scale over a short period of time. Long-term series of surface albedo are good indicators of climate change, especially over glaciers and polar caps. On the other hand, the albedo of bare soil provides a good diagnostic of their degradation. The reliability of satellite albedo is verified against ground-based radiometers and UAV, which also serves to calibrate the instruments embarked on space-borne observing systems and check the quality of the atmospheric correction.
surface albedo --- urbanization --- vegetation variation --- climate change --- DMSP --- albedo --- land use --- remote sensing --- Unmanned Aerial Vehicles --- vegetation indices --- snow --- climate --- Unmanned Aerial Vehicle (UAV) --- landscape --- consumer-grade camera --- radiometric calibration --- sea ice --- VIIRS --- Arctic --- PROMICE --- GC-NET --- validation --- AVHRR --- BRDF --- MODIS --- VJB --- LTDR --- directional correction --- spatial representativeness --- semivariogram --- Landsat --- HLS --- Sentinel 2 --- SURFRAD --- OzFlux --- directional hemispherical reflectance --- bi-hemispherical reflectance --- tower albedometer --- CGLS --- MISR --- upscaling --- bare soil albedo --- MODIS albedo --- contiguous United States --- soil line --- Landsat albedo --- soil moisture --- land surface albedo --- time series --- high spatio-temporal resolution --- EnKF --- spectral unmixing --- empirical modeling --- linear endmember --- forest cover --- forest management --- forest structure --- BRDF/Albedo --- NDSI Snow Cover --- n/a
Choose an application
Albedo is a known and documented phenomenon, defined as the reflectivity of a surface, i.e., the ratio of reflected light energy to incident light energy. It is a dimensionless quantity, used in particular in agro-forestry, urban environment, cryosphere and geology. It is an Essential Climate Variable (ECV), deemed extremely meaningful to compute the earth heat balance. The albedo of natural surfaces varies largely, especially in the visible, with the lowest values found for water bodies and dense vegetation canopies and the highest values for desert and snow. It also changes with the angular distribution and spectral composition of the incident radiation and with the surface moisture. Satellite observations allow consistent measuring of the surface albedo at continental scale over a short period of time. Long-term series of surface albedo are good indicators of climate change, especially over glaciers and polar caps. On the other hand, the albedo of bare soil provides a good diagnostic of their degradation. The reliability of satellite albedo is verified against ground-based radiometers and UAV, which also serves to calibrate the instruments embarked on space-borne observing systems and check the quality of the atmospheric correction.
Research & information: general --- Environmental economics --- surface albedo --- urbanization --- vegetation variation --- climate change --- DMSP --- albedo --- land use --- remote sensing --- Unmanned Aerial Vehicles --- vegetation indices --- snow --- climate --- Unmanned Aerial Vehicle (UAV) --- landscape --- consumer-grade camera --- radiometric calibration --- sea ice --- VIIRS --- Arctic --- PROMICE --- GC-NET --- validation --- AVHRR --- BRDF --- MODIS --- VJB --- LTDR --- directional correction --- spatial representativeness --- semivariogram --- Landsat --- HLS --- Sentinel 2 --- SURFRAD --- OzFlux --- directional hemispherical reflectance --- bi-hemispherical reflectance --- tower albedometer --- CGLS --- MISR --- upscaling --- bare soil albedo --- MODIS albedo --- contiguous United States --- soil line --- Landsat albedo --- soil moisture --- land surface albedo --- time series --- high spatio-temporal resolution --- EnKF --- spectral unmixing --- empirical modeling --- linear endmember --- forest cover --- forest management --- forest structure --- BRDF/Albedo --- NDSI Snow Cover
Choose an application
The combination of global warming and urban sprawl is the origin of the most hazardous climate change effect detected at urban level: Urban Heat Island, representing the urban overheating respect to the countryside surrounding the city. This book includes 18 papers representing the state of the art of detection, assessment mitigation and adaption to urban overheating. Advanced methods, strategies and technologies are here analyzed including relevant issues as: the role of urban materials and fabrics on urban climate and their potential mitigation, the impact of greenery and vegetation to reduce urban temperatures and improve the thermal comfort, the role the urban geometry in the air temperature rise, the use of satellite and ground data to assess and quantify the urban overheating and develop mitigation solutions, calculation methods and application to predict and assess mitigation scenarios. The outcomes of the book are thus relevant for a wide multidisciplinary audience, including: environmental scientists and engineers, architect and urban planners, policy makers and students.
emissivity --- mobile temperature observations --- urban heat island --- urban vegetation --- urban overheating --- spectral analysis --- Beirut --- urban heat island index --- land surface temperature --- ENVI-met --- air quality --- albedo --- climatic perception --- overheating --- urbanization --- road surface --- “cold spots” --- Weather Research and Forecasting model (WRF) --- urban remote sensing --- local climate zone --- cooling technologies --- Weather Research and Forecasting model --- cool surfaces --- outdoor thermal comfort --- energy savings --- air temperature --- measurement --- urbanized WRF --- mitigation measures --- Euramet --- heat health --- surface cool island effect --- urban-climate archipelago --- sky view factor --- urban climate archipelago --- open science --- cool roofs --- urban energy balance --- road lighting --- urban climatology --- material characterization --- urban climate --- thermal comfort --- air and surface temperature measurements --- cool pavements --- multi-objective optimization --- empirical line method --- calculation --- urban cooling --- multifractal analysis --- urban heat mitigation --- genetic algorithm --- heat stress --- “hot spots” --- subtropical climate --- EMPIR 16NRM02 --- building energy performance --- multiple linear regression --- built-up area --- thermal emittance --- urban morphology --- cost-optimal analysis --- building retrofit --- sustainability --- mitigation strategies --- luminance coefficient --- office buildings --- GIS --- structure functions analysis --- solar reflectance --- park cool island --- solar reflectance index --- urban open space --- building scale --- meteorological modeling --- shading --- surface albedo --- summer heat stress --- cool materials --- land cover fraction --- micro-climate simulations --- energy simulation --- urban microclimate --- urban development --- Physiologically Equivalent Temperature --- cool facades --- green area --- ageing --- MODIS downscaling --- spectral reflectance --- fine-resolution meteorological modeling --- urban areas --- morphological indicator --- lifecycle analysis --- non-constructible parcels --- WRF-Chem
Choose an application
The combination of global warming and urban sprawl is the origin of the most hazardous climate change effect detected at urban level: Urban Heat Island, representing the urban overheating respect to the countryside surrounding the city. This book includes 18 papers representing the state of the art of detection, assessment mitigation and adaption to urban overheating. Advanced methods, strategies and technologies are here analyzed including relevant issues as: the role of urban materials and fabrics on urban climate and their potential mitigation, the impact of greenery and vegetation to reduce urban temperatures and improve the thermal comfort, the role the urban geometry in the air temperature rise, the use of satellite and ground data to assess and quantify the urban overheating and develop mitigation solutions, calculation methods and application to predict and assess mitigation scenarios. The outcomes of the book are thus relevant for a wide multidisciplinary audience, including: environmental scientists and engineers, architect and urban planners, policy makers and students.
emissivity --- mobile temperature observations --- urban heat island --- urban vegetation --- urban overheating --- spectral analysis --- Beirut --- urban heat island index --- land surface temperature --- ENVI-met --- air quality --- albedo --- climatic perception --- overheating --- urbanization --- road surface --- “cold spots” --- Weather Research and Forecasting model (WRF) --- urban remote sensing --- local climate zone --- cooling technologies --- Weather Research and Forecasting model --- cool surfaces --- outdoor thermal comfort --- energy savings --- air temperature --- measurement --- urbanized WRF --- mitigation measures --- Euramet --- heat health --- surface cool island effect --- urban-climate archipelago --- sky view factor --- urban climate archipelago --- open science --- cool roofs --- urban energy balance --- road lighting --- urban climatology --- material characterization --- urban climate --- thermal comfort --- air and surface temperature measurements --- cool pavements --- multi-objective optimization --- empirical line method --- calculation --- urban cooling --- multifractal analysis --- urban heat mitigation --- genetic algorithm --- heat stress --- “hot spots” --- subtropical climate --- EMPIR 16NRM02 --- building energy performance --- multiple linear regression --- built-up area --- thermal emittance --- urban morphology --- cost-optimal analysis --- building retrofit --- sustainability --- mitigation strategies --- luminance coefficient --- office buildings --- GIS --- structure functions analysis --- solar reflectance --- park cool island --- solar reflectance index --- urban open space --- building scale --- meteorological modeling --- shading --- surface albedo --- summer heat stress --- cool materials --- land cover fraction --- micro-climate simulations --- energy simulation --- urban microclimate --- urban development --- Physiologically Equivalent Temperature --- cool facades --- green area --- ageing --- MODIS downscaling --- spectral reflectance --- fine-resolution meteorological modeling --- urban areas --- morphological indicator --- lifecycle analysis --- non-constructible parcels --- WRF-Chem
Choose an application
Quantitative land remote sensing has recently advanced dramatically, particularly in China. It has been largely driven by vast governmental investment, the availability of a huge amount of Chinese satellite data, geospatial information requirements for addressing pressing environmental issues and other societal benefits. Many individuals have also fostered and made great contributions to its development, and Prof. Xiaowen Li was one of these leading figures. This book is published in memory of Prof. Li. The papers collected in this book cover topics from surface reflectance simulation, inversion algorithm and estimation of variables, to applications in optical, thermal, Lidar and microwave remote sensing. The wide range of variables include directional reflectance, chlorophyll fluorescence, aerosol optical depth, incident solar radiation, albedo, surface temperature, upward longwave radiation, leaf area index, fractional vegetation cover, forest biomass, precipitation, evapotranspiration, freeze/thaw snow cover, vegetation productivity, phenology and biodiversity indicators. They clearly reflect the current level of research in this area. This book constitutes an excellent reference suitable for upper-level undergraduate students, graduate students and professionals in remote sensing.
gross primary production (GPP) --- interference filter --- Visible Infrared Imaging Radiometer Suite (VIIRS) --- cost-efficient --- precipitation --- topographic effects --- land surface temperature --- Land surface emissivity --- scale effects --- spatial-temporal variations --- statistics methods --- inter-annual variation --- spatial representativeness --- FY-3C/MERSI --- sunphotometer --- PROSPECT --- passive microwave --- flux measurements --- urban scale --- vegetation dust-retention --- multiple ecological factors --- leaf age --- standard error of the mean --- LUT method --- spectra --- SURFRAD --- Land surface temperature --- aboveground biomass --- uncertainty --- land surface variables --- copper --- Northeast China --- forest disturbance --- end of growing season (EOS) --- random forest model --- probability density function --- downward shortwave radiation --- machine learning --- MODIS products --- composite slope --- daily average value --- canopy reflectance --- spatiotemporal representative --- light use efficiency --- hybrid method --- disturbance index --- quantitative remote sensing inversion --- SCOPE --- GPP --- South China’s --- anisotropic reflectance --- vertical structure --- snow cover --- land cover change --- start of growing season (SOS) --- MS–PT algorithm --- aerosol --- pixel unmixing --- HiWATER --- algorithmic assessment --- surface radiation budget --- latitudinal pattern --- ICESat GLAS --- vegetation phenology --- SIF --- metric comparison --- Antarctica --- spatial heterogeneity --- comprehensive field experiment --- reflectance model --- sinusoidal method --- NDVI --- BRDF --- cloud fraction --- NPP --- VPM --- China --- dense forest --- vegetation remote sensing --- Cunninghamia --- high resolution --- geometric-optical model --- phenology --- LiDAR --- ZY-3 MUX --- point cloud --- multi-scale validation --- Fraunhofer Line Discrimination (FLD) --- rice --- fractional vegetation cover (FVC) --- interpolation --- high-resolution freeze/thaw --- drought --- Synthetic Aperture Radar (SAR) --- controlling factors --- sampling design --- downscaling --- n/a --- Chinese fir --- MRT-based model --- RADARSAT-2 --- northern China --- leaf area density --- potential evapotranspiration --- black-sky albedo (BSA) --- decision tree --- CMA --- fluorescence quantum efficiency in dark-adapted conditions (FQE) --- surface solar irradiance --- validation --- geographical detector model --- vertical vegetation stratification --- spatiotemporal distribution and variation --- gap fraction --- phenological parameters --- spatio-temporal --- albedometer --- variability --- GLASS --- gross primary productivity (GPP) --- EVI2 --- machine learning algorithms --- latent heat --- GLASS LAI time series --- boreal forest --- leaf --- maize --- heterogeneity --- temperature profiles --- crop-growing regions --- satellite observations --- rugged terrain --- species richness --- voxel --- LAI --- TMI data --- GF-1 WFV --- spectral --- HJ-1 CCD --- leaf area index --- evapotranspiration --- land-surface temperature products (LSTs) --- SPI --- AVHRR --- Tibetan Plateau --- snow-free albedo --- PROSPECT-5B+SAILH (PROSAIL) model --- MCD43A3 C6 --- 3D reconstruction --- photoelectric detector --- multi-data set --- BEPS --- aerosol retrieval --- plant functional type --- multisource data fusion --- remote sensing --- leaf spectral properties --- solo slope --- land surface albedo --- longwave upwelling radiation (LWUP) --- terrestrial LiDAR --- AMSR2 --- geometric optical radiative transfer (GORT) model --- MuSyQ-GPP algorithm --- tree canopy --- FY-3C/MWRI --- meteorological factors --- solar-induced chlorophyll fluorescence --- metric integration --- observations --- polar orbiting satellite --- arid/semiarid --- homogeneous and pure pixel filter --- thermal radiation directionality --- biodiversity --- gradient boosting regression tree --- forest canopy height --- Landsat --- subpixel information --- MODIS --- humidity profiles --- NIR --- geostationary satellite --- South China's --- MS-PT algorithm
Choose an application
Quantitative land remote sensing has recently advanced dramatically, particularly in China. It has been largely driven by vast governmental investment, the availability of a huge amount of Chinese satellite data, geospatial information requirements for addressing pressing environmental issues and other societal benefits. Many individuals have also fostered and made great contributions to its development, and Prof. Xiaowen Li was one of these leading figures. This book is published in memory of Prof. Li. The papers collected in this book cover topics from surface reflectance simulation, inversion algorithm and estimation of variables, to applications in optical, thermal, Lidar and microwave remote sensing. The wide range of variables include directional reflectance, chlorophyll fluorescence, aerosol optical depth, incident solar radiation, albedo, surface temperature, upward longwave radiation, leaf area index, fractional vegetation cover, forest biomass, precipitation, evapotranspiration, freeze/thaw snow cover, vegetation productivity, phenology and biodiversity indicators. They clearly reflect the current level of research in this area. This book constitutes an excellent reference suitable for upper-level undergraduate students, graduate students and professionals in remote sensing.
gross primary production (GPP) --- interference filter --- Visible Infrared Imaging Radiometer Suite (VIIRS) --- cost-efficient --- precipitation --- topographic effects --- land surface temperature --- Land surface emissivity --- scale effects --- spatial-temporal variations --- statistics methods --- inter-annual variation --- spatial representativeness --- FY-3C/MERSI --- sunphotometer --- PROSPECT --- passive microwave --- flux measurements --- urban scale --- vegetation dust-retention --- multiple ecological factors --- leaf age --- standard error of the mean --- LUT method --- spectra --- SURFRAD --- Land surface temperature --- aboveground biomass --- uncertainty --- land surface variables --- copper --- Northeast China --- forest disturbance --- end of growing season (EOS) --- random forest model --- probability density function --- downward shortwave radiation --- machine learning --- MODIS products --- composite slope --- daily average value --- canopy reflectance --- spatiotemporal representative --- light use efficiency --- hybrid method --- disturbance index --- quantitative remote sensing inversion --- SCOPE --- GPP --- South China’s --- anisotropic reflectance --- vertical structure --- snow cover --- land cover change --- start of growing season (SOS) --- MS–PT algorithm --- aerosol --- pixel unmixing --- HiWATER --- algorithmic assessment --- surface radiation budget --- latitudinal pattern --- ICESat GLAS --- vegetation phenology --- SIF --- metric comparison --- Antarctica --- spatial heterogeneity --- comprehensive field experiment --- reflectance model --- sinusoidal method --- NDVI --- BRDF --- cloud fraction --- NPP --- VPM --- China --- dense forest --- vegetation remote sensing --- Cunninghamia --- high resolution --- geometric-optical model --- phenology --- LiDAR --- ZY-3 MUX --- point cloud --- multi-scale validation --- Fraunhofer Line Discrimination (FLD) --- rice --- fractional vegetation cover (FVC) --- interpolation --- high-resolution freeze/thaw --- drought --- Synthetic Aperture Radar (SAR) --- controlling factors --- sampling design --- downscaling --- n/a --- Chinese fir --- MRT-based model --- RADARSAT-2 --- northern China --- leaf area density --- potential evapotranspiration --- black-sky albedo (BSA) --- decision tree --- CMA --- fluorescence quantum efficiency in dark-adapted conditions (FQE) --- surface solar irradiance --- validation --- geographical detector model --- vertical vegetation stratification --- spatiotemporal distribution and variation --- gap fraction --- phenological parameters --- spatio-temporal --- albedometer --- variability --- GLASS --- gross primary productivity (GPP) --- EVI2 --- machine learning algorithms --- latent heat --- GLASS LAI time series --- boreal forest --- leaf --- maize --- heterogeneity --- temperature profiles --- crop-growing regions --- satellite observations --- rugged terrain --- species richness --- voxel --- LAI --- TMI data --- GF-1 WFV --- spectral --- HJ-1 CCD --- leaf area index --- evapotranspiration --- land-surface temperature products (LSTs) --- SPI --- AVHRR --- Tibetan Plateau --- snow-free albedo --- PROSPECT-5B+SAILH (PROSAIL) model --- MCD43A3 C6 --- 3D reconstruction --- photoelectric detector --- multi-data set --- BEPS --- aerosol retrieval --- plant functional type --- multisource data fusion --- remote sensing --- leaf spectral properties --- solo slope --- land surface albedo --- longwave upwelling radiation (LWUP) --- terrestrial LiDAR --- AMSR2 --- geometric optical radiative transfer (GORT) model --- MuSyQ-GPP algorithm --- tree canopy --- FY-3C/MWRI --- meteorological factors --- solar-induced chlorophyll fluorescence --- metric integration --- observations --- polar orbiting satellite --- arid/semiarid --- homogeneous and pure pixel filter --- thermal radiation directionality --- biodiversity --- gradient boosting regression tree --- forest canopy height --- Landsat --- subpixel information --- MODIS --- humidity profiles --- NIR --- geostationary satellite --- South China's --- MS-PT algorithm
Choose an application
Quantitative land remote sensing has recently advanced dramatically, particularly in China. It has been largely driven by vast governmental investment, the availability of a huge amount of Chinese satellite data, geospatial information requirements for addressing pressing environmental issues and other societal benefits. Many individuals have also fostered and made great contributions to its development, and Prof. Xiaowen Li was one of these leading figures. This book is published in memory of Prof. Li. The papers collected in this book cover topics from surface reflectance simulation, inversion algorithm and estimation of variables, to applications in optical, thermal, Lidar and microwave remote sensing. The wide range of variables include directional reflectance, chlorophyll fluorescence, aerosol optical depth, incident solar radiation, albedo, surface temperature, upward longwave radiation, leaf area index, fractional vegetation cover, forest biomass, precipitation, evapotranspiration, freeze/thaw snow cover, vegetation productivity, phenology and biodiversity indicators. They clearly reflect the current level of research in this area. This book constitutes an excellent reference suitable for upper-level undergraduate students, graduate students and professionals in remote sensing.
gross primary production (GPP) --- interference filter --- Visible Infrared Imaging Radiometer Suite (VIIRS) --- cost-efficient --- precipitation --- topographic effects --- land surface temperature --- Land surface emissivity --- scale effects --- spatial-temporal variations --- statistics methods --- inter-annual variation --- spatial representativeness --- FY-3C/MERSI --- sunphotometer --- PROSPECT --- passive microwave --- flux measurements --- urban scale --- vegetation dust-retention --- multiple ecological factors --- leaf age --- standard error of the mean --- LUT method --- spectra --- SURFRAD --- Land surface temperature --- aboveground biomass --- uncertainty --- land surface variables --- copper --- Northeast China --- forest disturbance --- end of growing season (EOS) --- random forest model --- probability density function --- downward shortwave radiation --- machine learning --- MODIS products --- composite slope --- daily average value --- canopy reflectance --- spatiotemporal representative --- light use efficiency --- hybrid method --- disturbance index --- quantitative remote sensing inversion --- SCOPE --- GPP --- South China’s --- anisotropic reflectance --- vertical structure --- snow cover --- land cover change --- start of growing season (SOS) --- MS–PT algorithm --- aerosol --- pixel unmixing --- HiWATER --- algorithmic assessment --- surface radiation budget --- latitudinal pattern --- ICESat GLAS --- vegetation phenology --- SIF --- metric comparison --- Antarctica --- spatial heterogeneity --- comprehensive field experiment --- reflectance model --- sinusoidal method --- NDVI --- BRDF --- cloud fraction --- NPP --- VPM --- China --- dense forest --- vegetation remote sensing --- Cunninghamia --- high resolution --- geometric-optical model --- phenology --- LiDAR --- ZY-3 MUX --- point cloud --- multi-scale validation --- Fraunhofer Line Discrimination (FLD) --- rice --- fractional vegetation cover (FVC) --- interpolation --- high-resolution freeze/thaw --- drought --- Synthetic Aperture Radar (SAR) --- controlling factors --- sampling design --- downscaling --- n/a --- Chinese fir --- MRT-based model --- RADARSAT-2 --- northern China --- leaf area density --- potential evapotranspiration --- black-sky albedo (BSA) --- decision tree --- CMA --- fluorescence quantum efficiency in dark-adapted conditions (FQE) --- surface solar irradiance --- validation --- geographical detector model --- vertical vegetation stratification --- spatiotemporal distribution and variation --- gap fraction --- phenological parameters --- spatio-temporal --- albedometer --- variability --- GLASS --- gross primary productivity (GPP) --- EVI2 --- machine learning algorithms --- latent heat --- GLASS LAI time series --- boreal forest --- leaf --- maize --- heterogeneity --- temperature profiles --- crop-growing regions --- satellite observations --- rugged terrain --- species richness --- voxel --- LAI --- TMI data --- GF-1 WFV --- spectral --- HJ-1 CCD --- leaf area index --- evapotranspiration --- land-surface temperature products (LSTs) --- SPI --- AVHRR --- Tibetan Plateau --- snow-free albedo --- PROSPECT-5B+SAILH (PROSAIL) model --- MCD43A3 C6 --- 3D reconstruction --- photoelectric detector --- multi-data set --- BEPS --- aerosol retrieval --- plant functional type --- multisource data fusion --- remote sensing --- leaf spectral properties --- solo slope --- land surface albedo --- longwave upwelling radiation (LWUP) --- terrestrial LiDAR --- AMSR2 --- geometric optical radiative transfer (GORT) model --- MuSyQ-GPP algorithm --- tree canopy --- FY-3C/MWRI --- meteorological factors --- solar-induced chlorophyll fluorescence --- metric integration --- observations --- polar orbiting satellite --- arid/semiarid --- homogeneous and pure pixel filter --- thermal radiation directionality --- biodiversity --- gradient boosting regression tree --- forest canopy height --- Landsat --- subpixel information --- MODIS --- humidity profiles --- NIR --- geostationary satellite --- South China's --- MS-PT algorithm
Choose an application
Quantitative land remote sensing has recently advanced dramatically, particularly in China. It has been largely driven by vast governmental investment, the availability of a huge amount of Chinese satellite data, geospatial information requirements for addressing pressing environmental issues and other societal benefits. Many individuals have also fostered and made great contributions to its development, and Prof. Xiaowen Li was one of these leading figures. This book is published in memory of Prof. Li. The papers collected in this book cover topics from surface reflectance simulation, inversion algorithm and estimation of variables, to applications in optical, thermal, Lidar and microwave remote sensing. The wide range of variables include directional reflectance, chlorophyll fluorescence, aerosol optical depth, incident solar radiation, albedo, surface temperature, upward longwave radiation, leaf area index, fractional vegetation cover, forest biomass, precipitation, evapotranspiration, freeze/thaw snow cover, vegetation productivity, phenology and biodiversity indicators. They clearly reflect the current level of research in this area. This book constitutes an excellent reference suitable for upper-level undergraduate students, graduate students and professionals in remote sensing.
gross primary production (GPP) --- interference filter --- Visible Infrared Imaging Radiometer Suite (VIIRS) --- cost-efficient --- precipitation --- topographic effects --- land surface temperature --- Land surface emissivity --- scale effects --- spatial-temporal variations --- statistics methods --- inter-annual variation --- spatial representativeness --- FY-3C/MERSI --- sunphotometer --- PROSPECT --- passive microwave --- flux measurements --- urban scale --- vegetation dust-retention --- multiple ecological factors --- leaf age --- standard error of the mean --- LUT method --- spectra --- SURFRAD --- Land surface temperature --- aboveground biomass --- uncertainty --- land surface variables --- copper --- Northeast China --- forest disturbance --- end of growing season (EOS) --- random forest model --- probability density function --- downward shortwave radiation --- machine learning --- MODIS products --- composite slope --- daily average value --- canopy reflectance --- spatiotemporal representative --- light use efficiency --- hybrid method --- disturbance index --- quantitative remote sensing inversion --- SCOPE --- GPP --- South China's --- anisotropic reflectance --- vertical structure --- snow cover --- land cover change --- start of growing season (SOS) --- MS-PT algorithm --- aerosol --- pixel unmixing --- HiWATER --- algorithmic assessment --- surface radiation budget --- latitudinal pattern --- ICESat GLAS --- vegetation phenology --- SIF --- metric comparison --- Antarctica --- spatial heterogeneity --- comprehensive field experiment --- reflectance model --- sinusoidal method --- NDVI --- BRDF --- cloud fraction --- NPP --- VPM --- China --- dense forest --- vegetation remote sensing --- Cunninghamia --- high resolution --- geometric-optical model --- phenology --- LiDAR --- ZY-3 MUX --- point cloud --- multi-scale validation --- Fraunhofer Line Discrimination (FLD) --- rice --- fractional vegetation cover (FVC) --- interpolation --- high-resolution freeze/thaw --- drought --- Synthetic Aperture Radar (SAR) --- controlling factors --- sampling design --- downscaling --- Chinese fir --- MRT-based model --- RADARSAT-2 --- northern China --- leaf area density --- potential evapotranspiration --- black-sky albedo (BSA) --- decision tree --- CMA --- fluorescence quantum efficiency in dark-adapted conditions (FQE) --- surface solar irradiance --- validation --- geographical detector model --- vertical vegetation stratification --- spatiotemporal distribution and variation --- gap fraction --- phenological parameters --- spatio-temporal --- albedometer --- variability --- GLASS --- gross primary productivity (GPP) --- EVI2 --- machine learning algorithms --- latent heat --- GLASS LAI time series --- boreal forest --- leaf --- maize --- heterogeneity --- temperature profiles --- crop-growing regions --- satellite observations --- rugged terrain --- species richness --- voxel --- LAI --- TMI data --- GF-1 WFV --- spectral --- HJ-1 CCD --- leaf area index --- evapotranspiration --- land-surface temperature products (LSTs) --- SPI --- AVHRR --- Tibetan Plateau --- snow-free albedo --- PROSPECT-5B+SAILH (PROSAIL) model --- MCD43A3 C6 --- 3D reconstruction --- photoelectric detector --- multi-data set --- BEPS --- aerosol retrieval --- plant functional type --- multisource data fusion --- remote sensing --- leaf spectral properties --- solo slope --- land surface albedo --- longwave upwelling radiation (LWUP) --- terrestrial LiDAR --- AMSR2 --- geometric optical radiative transfer (GORT) model --- MuSyQ-GPP algorithm --- tree canopy --- FY-3C/MWRI --- meteorological factors --- solar-induced chlorophyll fluorescence --- metric integration --- observations --- polar orbiting satellite --- arid/semiarid --- homogeneous and pure pixel filter --- thermal radiation directionality --- biodiversity --- gradient boosting regression tree --- forest canopy height --- Landsat --- subpixel information --- MODIS --- humidity profiles --- NIR --- geostationary satellite
Choose an application
Quantitative land remote sensing has recently advanced dramatically, particularly in China. It has been largely driven by vast governmental investment, the availability of a huge amount of Chinese satellite data, geospatial information requirements for addressing pressing environmental issues and other societal benefits. Many individuals have also fostered and made great contributions to its development, and Prof. Xiaowen Li was one of these leading figures. This book is published in memory of Prof. Li. The papers collected in this book cover topics from surface reflectance simulation, inversion algorithm and estimation of variables, to applications in optical, thermal, Lidar and microwave remote sensing. The wide range of variables include directional reflectance, chlorophyll fluorescence, aerosol optical depth, incident solar radiation, albedo, surface temperature, upward longwave radiation, leaf area index, fractional vegetation cover, forest biomass, precipitation, evapotranspiration, freeze/thaw snow cover, vegetation productivity, phenology and biodiversity indicators. They clearly reflect the current level of research in this area. This book constitutes an excellent reference suitable for upper-level undergraduate students, graduate students and professionals in remote sensing.
gross primary production (GPP) --- interference filter --- Visible Infrared Imaging Radiometer Suite (VIIRS) --- cost-efficient --- precipitation --- topographic effects --- land surface temperature --- Land surface emissivity --- scale effects --- spatial-temporal variations --- statistics methods --- inter-annual variation --- spatial representativeness --- FY-3C/MERSI --- sunphotometer --- PROSPECT --- passive microwave --- flux measurements --- urban scale --- vegetation dust-retention --- multiple ecological factors --- leaf age --- standard error of the mean --- LUT method --- spectra --- SURFRAD --- Land surface temperature --- aboveground biomass --- uncertainty --- land surface variables --- copper --- Northeast China --- forest disturbance --- end of growing season (EOS) --- random forest model --- probability density function --- downward shortwave radiation --- machine learning --- MODIS products --- composite slope --- daily average value --- canopy reflectance --- spatiotemporal representative --- light use efficiency --- hybrid method --- disturbance index --- quantitative remote sensing inversion --- SCOPE --- GPP --- South China's --- anisotropic reflectance --- vertical structure --- snow cover --- land cover change --- start of growing season (SOS) --- MS-PT algorithm --- aerosol --- pixel unmixing --- HiWATER --- algorithmic assessment --- surface radiation budget --- latitudinal pattern --- ICESat GLAS --- vegetation phenology --- SIF --- metric comparison --- Antarctica --- spatial heterogeneity --- comprehensive field experiment --- reflectance model --- sinusoidal method --- NDVI --- BRDF --- cloud fraction --- NPP --- VPM --- China --- dense forest --- vegetation remote sensing --- Cunninghamia --- high resolution --- geometric-optical model --- phenology --- LiDAR --- ZY-3 MUX --- point cloud --- multi-scale validation --- Fraunhofer Line Discrimination (FLD) --- rice --- fractional vegetation cover (FVC) --- interpolation --- high-resolution freeze/thaw --- drought --- Synthetic Aperture Radar (SAR) --- controlling factors --- sampling design --- downscaling --- Chinese fir --- MRT-based model --- RADARSAT-2 --- northern China --- leaf area density --- potential evapotranspiration --- black-sky albedo (BSA) --- decision tree --- CMA --- fluorescence quantum efficiency in dark-adapted conditions (FQE) --- surface solar irradiance --- validation --- geographical detector model --- vertical vegetation stratification --- spatiotemporal distribution and variation --- gap fraction --- phenological parameters --- spatio-temporal --- albedometer --- variability --- GLASS --- gross primary productivity (GPP) --- EVI2 --- machine learning algorithms --- latent heat --- GLASS LAI time series --- boreal forest --- leaf --- maize --- heterogeneity --- temperature profiles --- crop-growing regions --- satellite observations --- rugged terrain --- species richness --- voxel --- LAI --- TMI data --- GF-1 WFV --- spectral --- HJ-1 CCD --- leaf area index --- evapotranspiration --- land-surface temperature products (LSTs) --- SPI --- AVHRR --- Tibetan Plateau --- snow-free albedo --- PROSPECT-5B+SAILH (PROSAIL) model --- MCD43A3 C6 --- 3D reconstruction --- photoelectric detector --- multi-data set --- BEPS --- aerosol retrieval --- plant functional type --- multisource data fusion --- remote sensing --- leaf spectral properties --- solo slope --- land surface albedo --- longwave upwelling radiation (LWUP) --- terrestrial LiDAR --- AMSR2 --- geometric optical radiative transfer (GORT) model --- MuSyQ-GPP algorithm --- tree canopy --- FY-3C/MWRI --- meteorological factors --- solar-induced chlorophyll fluorescence --- metric integration --- observations --- polar orbiting satellite --- arid/semiarid --- homogeneous and pure pixel filter --- thermal radiation directionality --- biodiversity --- gradient boosting regression tree --- forest canopy height --- Landsat --- subpixel information --- MODIS --- humidity profiles --- NIR --- geostationary satellite
Listing 1 - 9 of 9 |
Sort by
|