Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2020 (6)

Listing 1 - 6 of 6
Sort by

Book
Application of Advanced Oxidation Processes
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The increasingly stricter standards for effluent discharge and the decreasing availability of freshwater resources worldwide have made the development of advanced wastewater treatment technologies necessary. Advanced oxidation processes (AOPs) are becoming an attractive alternative and a complementary treatment option to conventional methods. AOPs are used to improve the biodegradability of wastewaters containing non-biodegradable organics. Besides, AOPs may inactivate pathogenic microorganisms without adding additional chemicals to the water during disinfection, avoiding the formation of hazardous by-products. This Special Issue of Processes aims to cover recent progress and novel trends in the field of AOPs, including UV/H2O2, O3, sulphate-radical oxidation, nanotechnology in AOPs, heterogeneous photocatalysis, sonolysis, Fenton, photo-Fenton, electrochemical oxidation, and related oxidation processes. The topics to be addressed in this Special Issue of Processes may also include the application of AOPs at various scales (laboratory, pilot, or industrial scale), the degradation of emerging contaminants in water and wastewater and pollutants in the gas phase, the quantification of toxicicy in residuals, the development of novel catalytic materials and of hybrid processes, including the combination of AOPs with other technologies, process intensification, and the use of photo-electrochemical processes for energy production.

Keywords

History of engineering & technology --- polycyclic musks --- degradation mechanism --- UV/chlorine advanced oxidation process --- water treatment --- UV-LED --- photoreactors --- mining wastewater --- cyanide --- metal removal --- photocatalysis --- TiO2 nanotubes --- emerging contaminants --- paracetamol --- pH --- heating oxidation --- surface/interface properties --- floatability --- induction time --- bubble-particle wrap angle --- cow manure --- chemical activation process --- activated carbon --- pore property --- cationic pollutant --- adsorption performance --- nano zero-valent iron --- borohydride reduction method --- wastewater treatment --- iron nanopowders --- lead ions --- biological processes --- electrochemical processes --- oxidation processes --- petroleum --- phenols --- sulfides --- ethyl violet --- Mn-doped Fe/rGO nanocomposites --- mesoporous materials --- artificial intelligence --- gradient boosted regression trees --- total dissolved nitrogen --- digestion method --- digestion efficiency --- intensification --- ozone --- electrolyzed water --- foodborne pathogens --- sanitization --- advace oxitadion processes (AOP) --- electro-oxidation --- ferrate ion --- BBR dye --- polycyclic musks --- degradation mechanism --- UV/chlorine advanced oxidation process --- water treatment --- UV-LED --- photoreactors --- mining wastewater --- cyanide --- metal removal --- photocatalysis --- TiO2 nanotubes --- emerging contaminants --- paracetamol --- pH --- heating oxidation --- surface/interface properties --- floatability --- induction time --- bubble-particle wrap angle --- cow manure --- chemical activation process --- activated carbon --- pore property --- cationic pollutant --- adsorption performance --- nano zero-valent iron --- borohydride reduction method --- wastewater treatment --- iron nanopowders --- lead ions --- biological processes --- electrochemical processes --- oxidation processes --- petroleum --- phenols --- sulfides --- ethyl violet --- Mn-doped Fe/rGO nanocomposites --- mesoporous materials --- artificial intelligence --- gradient boosted regression trees --- total dissolved nitrogen --- digestion method --- digestion efficiency --- intensification --- ozone --- electrolyzed water --- foodborne pathogens --- sanitization --- advace oxitadion processes (AOP) --- electro-oxidation --- ferrate ion --- BBR dye


Book
Application of Advanced Oxidation Processes
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The increasingly stricter standards for effluent discharge and the decreasing availability of freshwater resources worldwide have made the development of advanced wastewater treatment technologies necessary. Advanced oxidation processes (AOPs) are becoming an attractive alternative and a complementary treatment option to conventional methods. AOPs are used to improve the biodegradability of wastewaters containing non-biodegradable organics. Besides, AOPs may inactivate pathogenic microorganisms without adding additional chemicals to the water during disinfection, avoiding the formation of hazardous by-products. This Special Issue of Processes aims to cover recent progress and novel trends in the field of AOPs, including UV/H2O2, O3, sulphate-radical oxidation, nanotechnology in AOPs, heterogeneous photocatalysis, sonolysis, Fenton, photo-Fenton, electrochemical oxidation, and related oxidation processes. The topics to be addressed in this Special Issue of Processes may also include the application of AOPs at various scales (laboratory, pilot, or industrial scale), the degradation of emerging contaminants in water and wastewater and pollutants in the gas phase, the quantification of toxicicy in residuals, the development of novel catalytic materials and of hybrid processes, including the combination of AOPs with other technologies, process intensification, and the use of photo-electrochemical processes for energy production.


Book
Application of Advanced Oxidation Processes
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The increasingly stricter standards for effluent discharge and the decreasing availability of freshwater resources worldwide have made the development of advanced wastewater treatment technologies necessary. Advanced oxidation processes (AOPs) are becoming an attractive alternative and a complementary treatment option to conventional methods. AOPs are used to improve the biodegradability of wastewaters containing non-biodegradable organics. Besides, AOPs may inactivate pathogenic microorganisms without adding additional chemicals to the water during disinfection, avoiding the formation of hazardous by-products. This Special Issue of Processes aims to cover recent progress and novel trends in the field of AOPs, including UV/H2O2, O3, sulphate-radical oxidation, nanotechnology in AOPs, heterogeneous photocatalysis, sonolysis, Fenton, photo-Fenton, electrochemical oxidation, and related oxidation processes. The topics to be addressed in this Special Issue of Processes may also include the application of AOPs at various scales (laboratory, pilot, or industrial scale), the degradation of emerging contaminants in water and wastewater and pollutants in the gas phase, the quantification of toxicicy in residuals, the development of novel catalytic materials and of hybrid processes, including the combination of AOPs with other technologies, process intensification, and the use of photo-electrochemical processes for energy production.


Book
Nanostructured Light-Emitters
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Significant progress has been made in nanophotonics and the use of nanostructured materials for optoelectronic devices, including light-emitting diodes (LEDs) and laser diodes, which have recently attracted considerable attention due to their unique geometry. Nanostructures in small dimensions, comprising nanowires, nanotubes, and nanoparticles, etc,. can be perfectly integrated into a variety of technological platforms, offering novel physical and chemical properties for high-performance, light-emitting devices. This Special Issue aims to present the most recent advances in the field of nanophotonics, which focuses on LEDs and laser diodes. We invite contributions of original research articles, as well as review articles that are aligned to the following topics that include, but are not limited to, thetheoretical calculation, synthesis, characterization, and application of such novel nanostructures for light-emitting devices. The application of nanostructured light-emitters in general lighting, imaging, and displays is also highly encouraged.

Keywords

History of engineering & technology --- Liquid phase deposition method --- InGaN/GaN light-emitting diode --- silver nanoparticle --- zinc oxide --- localized surface plasmon --- β-Ga2O3 --- III-Nitrides --- monoclinic --- hexagonal arrangement --- high-power --- current distribution --- vertical structure LED --- blue organic light emitting diodes --- transport materials --- host-dopant --- nanoparticles --- luminescence --- non-stoichiometric ZnxAgyInS1.5+x+0.5y nanocrystals --- photoluminescence properties --- tunable fluorescence emission --- one-pot approach --- perovskite light-emitting diodes --- three-step spin coating --- hole transport layer --- PEDOT:PSS/MoO3-ammonia composite --- μLED displays --- μLEDs --- GaN nanowires --- core-shell structure --- ultraviolet (UV) emitter --- surface plasmon --- Pt nanoparticles --- hole-pattern --- photon emission efficiency --- distributed Bragg reflectors --- gratings --- GaN-based lasers --- linewidth --- epsilon-near-zero --- wideband absorber --- plasmon mode --- Brewster mode --- visible light communication --- photonic crystals --- flip-chip LED --- Purcell effect --- light extraction efficiency --- nanostructured materials --- surface/interface properties --- nanostructured light-emitting devices --- physical mechanism --- surface/interface modification --- surface/interface control --- micro-scale light emitting diode --- sapphire substrate --- encapsulation --- compound semiconductor --- nanostructure --- ultraviolet --- light-emitting diode (LED) --- molecular beam epitaxy --- GaN --- AlN --- photonic nanojet --- photonic nanojet array --- self-assembly --- template-assisted self-assembly --- patterning efficiency --- III-nitride thin film --- nanostructures --- ultraviolet emitters --- surface passivation --- luminescence intensity --- Liquid phase deposition method --- InGaN/GaN light-emitting diode --- silver nanoparticle --- zinc oxide --- localized surface plasmon --- β-Ga2O3 --- III-Nitrides --- monoclinic --- hexagonal arrangement --- high-power --- current distribution --- vertical structure LED --- blue organic light emitting diodes --- transport materials --- host-dopant --- nanoparticles --- luminescence --- non-stoichiometric ZnxAgyInS1.5+x+0.5y nanocrystals --- photoluminescence properties --- tunable fluorescence emission --- one-pot approach --- perovskite light-emitting diodes --- three-step spin coating --- hole transport layer --- PEDOT:PSS/MoO3-ammonia composite --- μLED displays --- μLEDs --- GaN nanowires --- core-shell structure --- ultraviolet (UV) emitter --- surface plasmon --- Pt nanoparticles --- hole-pattern --- photon emission efficiency --- distributed Bragg reflectors --- gratings --- GaN-based lasers --- linewidth --- epsilon-near-zero --- wideband absorber --- plasmon mode --- Brewster mode --- visible light communication --- photonic crystals --- flip-chip LED --- Purcell effect --- light extraction efficiency --- nanostructured materials --- surface/interface properties --- nanostructured light-emitting devices --- physical mechanism --- surface/interface modification --- surface/interface control --- micro-scale light emitting diode --- sapphire substrate --- encapsulation --- compound semiconductor --- nanostructure --- ultraviolet --- light-emitting diode (LED) --- molecular beam epitaxy --- GaN --- AlN --- photonic nanojet --- photonic nanojet array --- self-assembly --- template-assisted self-assembly --- patterning efficiency --- III-nitride thin film --- nanostructures --- ultraviolet emitters --- surface passivation --- luminescence intensity


Book
Nanostructured Light-Emitters
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Significant progress has been made in nanophotonics and the use of nanostructured materials for optoelectronic devices, including light-emitting diodes (LEDs) and laser diodes, which have recently attracted considerable attention due to their unique geometry. Nanostructures in small dimensions, comprising nanowires, nanotubes, and nanoparticles, etc,. can be perfectly integrated into a variety of technological platforms, offering novel physical and chemical properties for high-performance, light-emitting devices. This Special Issue aims to present the most recent advances in the field of nanophotonics, which focuses on LEDs and laser diodes. We invite contributions of original research articles, as well as review articles that are aligned to the following topics that include, but are not limited to, thetheoretical calculation, synthesis, characterization, and application of such novel nanostructures for light-emitting devices. The application of nanostructured light-emitters in general lighting, imaging, and displays is also highly encouraged.

Keywords

History of engineering & technology --- Liquid phase deposition method --- InGaN/GaN light-emitting diode --- silver nanoparticle --- zinc oxide --- localized surface plasmon --- β-Ga2O3 --- III-Nitrides --- monoclinic --- hexagonal arrangement --- high-power --- current distribution --- vertical structure LED --- blue organic light emitting diodes --- transport materials --- host-dopant --- nanoparticles --- luminescence --- non-stoichiometric ZnxAgyInS1.5+x+0.5y nanocrystals --- photoluminescence properties --- tunable fluorescence emission --- one-pot approach --- perovskite light-emitting diodes --- three-step spin coating --- hole transport layer --- PEDOT:PSS/MoO3-ammonia composite --- μLED displays --- μLEDs --- GaN nanowires --- core-shell structure --- ultraviolet (UV) emitter --- surface plasmon --- Pt nanoparticles --- hole-pattern --- photon emission efficiency --- distributed Bragg reflectors --- gratings --- GaN-based lasers --- linewidth --- epsilon-near-zero --- wideband absorber --- plasmon mode --- Brewster mode --- visible light communication --- photonic crystals --- flip-chip LED --- Purcell effect --- light extraction efficiency --- nanostructured materials --- surface/interface properties --- nanostructured light-emitting devices --- physical mechanism --- surface/interface modification --- surface/interface control --- micro-scale light emitting diode --- sapphire substrate --- encapsulation --- compound semiconductor --- nanostructure --- ultraviolet --- light-emitting diode (LED) --- molecular beam epitaxy --- GaN --- AlN --- photonic nanojet --- photonic nanojet array --- self-assembly --- template-assisted self-assembly --- patterning efficiency --- III-nitride thin film --- nanostructures --- ultraviolet emitters --- surface passivation --- luminescence intensity --- n/a


Book
Nanostructured Light-Emitters
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Significant progress has been made in nanophotonics and the use of nanostructured materials for optoelectronic devices, including light-emitting diodes (LEDs) and laser diodes, which have recently attracted considerable attention due to their unique geometry. Nanostructures in small dimensions, comprising nanowires, nanotubes, and nanoparticles, etc,. can be perfectly integrated into a variety of technological platforms, offering novel physical and chemical properties for high-performance, light-emitting devices. This Special Issue aims to present the most recent advances in the field of nanophotonics, which focuses on LEDs and laser diodes. We invite contributions of original research articles, as well as review articles that are aligned to the following topics that include, but are not limited to, thetheoretical calculation, synthesis, characterization, and application of such novel nanostructures for light-emitting devices. The application of nanostructured light-emitters in general lighting, imaging, and displays is also highly encouraged.

Keywords

Liquid phase deposition method --- InGaN/GaN light-emitting diode --- silver nanoparticle --- zinc oxide --- localized surface plasmon --- β-Ga2O3 --- III-Nitrides --- monoclinic --- hexagonal arrangement --- high-power --- current distribution --- vertical structure LED --- blue organic light emitting diodes --- transport materials --- host-dopant --- nanoparticles --- luminescence --- non-stoichiometric ZnxAgyInS1.5+x+0.5y nanocrystals --- photoluminescence properties --- tunable fluorescence emission --- one-pot approach --- perovskite light-emitting diodes --- three-step spin coating --- hole transport layer --- PEDOT:PSS/MoO3-ammonia composite --- μLED displays --- μLEDs --- GaN nanowires --- core-shell structure --- ultraviolet (UV) emitter --- surface plasmon --- Pt nanoparticles --- hole-pattern --- photon emission efficiency --- distributed Bragg reflectors --- gratings --- GaN-based lasers --- linewidth --- epsilon-near-zero --- wideband absorber --- plasmon mode --- Brewster mode --- visible light communication --- photonic crystals --- flip-chip LED --- Purcell effect --- light extraction efficiency --- nanostructured materials --- surface/interface properties --- nanostructured light-emitting devices --- physical mechanism --- surface/interface modification --- surface/interface control --- micro-scale light emitting diode --- sapphire substrate --- encapsulation --- compound semiconductor --- nanostructure --- ultraviolet --- light-emitting diode (LED) --- molecular beam epitaxy --- GaN --- AlN --- photonic nanojet --- photonic nanojet array --- self-assembly --- template-assisted self-assembly --- patterning efficiency --- III-nitride thin film --- nanostructures --- ultraviolet emitters --- surface passivation --- luminescence intensity --- n/a

Listing 1 - 6 of 6
Sort by