Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULB (3)

ULiège (3)

VIVES (3)

More...

Resource type

book (5)


Language

English (5)


Year
From To Submit

2021 (3)

2019 (2)

Listing 1 - 5 of 5
Sort by

Book
Energy-Water Nexus
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Water is necessary to produce energy, and energy is required to pump, treat, and transport water. The energy–water nexus examines the interactions between these two inextricably linked elements. This Special Issue aims to explore a single "system of systems" for the integration of energy systems. This approach considers the relationships between electricity, thermal, and fuel systems; and data and information networks in order to ensure optimal integration and interoperability across the entire spectrum of the energy system. This framework for the integration of energy systems can be adapted to evaluate the interactions between energy and water. This Special Issue focuses on the analysis of water interactions with and dependencies on the dynamics of the electricity sector and the transport sector


Book
Energy-Water Nexus
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Water is necessary to produce energy, and energy is required to pump, treat, and transport water. The energy–water nexus examines the interactions between these two inextricably linked elements. This Special Issue aims to explore a single "system of systems" for the integration of energy systems. This approach considers the relationships between electricity, thermal, and fuel systems; and data and information networks in order to ensure optimal integration and interoperability across the entire spectrum of the energy system. This framework for the integration of energy systems can be adapted to evaluate the interactions between energy and water. This Special Issue focuses on the analysis of water interactions with and dependencies on the dynamics of the electricity sector and the transport sector


Book
Energy-Water Nexus
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Water is necessary to produce energy, and energy is required to pump, treat, and transport water. The energy–water nexus examines the interactions between these two inextricably linked elements. This Special Issue aims to explore a single "system of systems" for the integration of energy systems. This approach considers the relationships between electricity, thermal, and fuel systems; and data and information networks in order to ensure optimal integration and interoperability across the entire spectrum of the energy system. This framework for the integration of energy systems can be adapted to evaluate the interactions between energy and water. This Special Issue focuses on the analysis of water interactions with and dependencies on the dynamics of the electricity sector and the transport sector

Keywords

History of engineering & technology --- waste heat recovery --- absorption cooling --- water–energy nexus --- steelworks --- TRNSYS --- non-equilibrium molecular dynamics --- deformed carbon nanotubes --- deformed boron nitride nanotubes --- water transport --- diffusion --- Z-distortion --- XY-distortion --- screw distortion --- oil/water separation --- superhydrophilic/underwater-superoleophobic membranes --- opposite properties --- superhydrophobicity/superoleophilicity --- selective wettability --- micro/nanoscale composite structure --- virtual water network --- inter-provincial electricity transmission --- structural decomposition analysis --- electricity-water nexus --- cooling tower --- response surface model --- water --- power plant --- decarbonization --- energy concepts --- long-term energy storage --- power-to-gas --- power-to-X --- wastewater treatment --- anaerobic digestion --- water-energy nexus --- demand response --- energy consumption optimization --- multi-objective model --- urban water system --- local water supply --- electricity demand --- index decomposition analysis --- waste heat recovery --- absorption cooling --- water–energy nexus --- steelworks --- TRNSYS --- non-equilibrium molecular dynamics --- deformed carbon nanotubes --- deformed boron nitride nanotubes --- water transport --- diffusion --- Z-distortion --- XY-distortion --- screw distortion --- oil/water separation --- superhydrophilic/underwater-superoleophobic membranes --- opposite properties --- superhydrophobicity/superoleophilicity --- selective wettability --- micro/nanoscale composite structure --- virtual water network --- inter-provincial electricity transmission --- structural decomposition analysis --- electricity-water nexus --- cooling tower --- response surface model --- water --- power plant --- decarbonization --- energy concepts --- long-term energy storage --- power-to-gas --- power-to-X --- wastewater treatment --- anaerobic digestion --- water-energy nexus --- demand response --- energy consumption optimization --- multi-objective model --- urban water system --- local water supply --- electricity demand --- index decomposition analysis


Book
Polymeric Materials: Surfaces, Interfaces and Bioapplications
Authors: --- --- --- ---
ISBN: 3038979635 3038979627 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book collects the articles published in the Special Issue “Polymeric Materials: Surfaces, Interfaces and Bioapplications”. It shows the advances in polymeric materials, which have tremendous applications in agricultural films, food packaging, dental restoration, antimicrobial systems, and tissue engineering. These polymeric materials are presented as films, coatings, particles, fibers, hydrogels, or networks. The potential to modify and modulate their surfaces or their content by different techniques, such as click chemistry, ozonation, breath figures, wrinkle formation, or electrospray, are also explained, taking into account the relationship between the structure and properties in the final application. Moreover, new trends in the development of such materials are presented, using more environmental friendly and safe methods, which, at the same time, have a high impact on our society.

Keywords

Artificial muscle --- chitosan --- graphene oxide --- antifouling coatings --- tissue engineering --- biodegradable --- polymer cross-linking --- UV/ozone --- inmiscibility --- bioapplications --- antibacterial --- polypropylene --- degradation --- protein-repellent polymer --- micro- and nanopatterned films --- oral biofilms --- bio-based --- composite films --- stimuli-responsive materials/smart surfaces --- surface modification/functionalization --- caries inhibition --- superhydrophobic --- blends --- nanosecond laser surface modification --- biofouling --- degenerative disc disease --- surface-attached polymer network --- total disc replacement --- surface wettability --- bonding agents --- polydimethylsiloxane --- natural biofilms --- Electrical stimulation --- microparticles --- hemicelluloses --- superhydrophilic --- fossil --- surface segregation --- honeycomb --- prolonged drug release --- hydrogel --- conformational entropy --- Electroactive biomaterials --- antimicrobial --- ABS (Acrylonitrile-Butadiene-Styrene) --- intervertebral disc --- calcium chloride --- sustainable --- biodegradable polymers --- friction and wear --- Drug delivery --- alginate modification --- breath figures --- spinal fusion --- blends and (nano)composites --- composites --- antimicrobial polymer --- periodontal pathogens --- polymeric composites --- scaffolds --- corn stalk fiber --- worn surface morphology --- irradiance --- friction composite --- antimicrobial coatings --- gradient wrinkles --- porous surfaces --- Electrically conductive polymers --- oxygen barrier property --- food packaging --- spinal anatomy --- Smart composites --- recycling --- packaging --- hybrids --- bio-based polymers --- coatings --- poly(x-chlorostyrene) --- eco-friendly --- multidimensional scale analysis --- single-stranded conformation polymorphism --- Bioelectric effect --- spray drying --- herniated disc


Book
Microscale Surface Tension and Its Applications
Authors: ---
ISBN: 3039215655 3039215647 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Building on advances in miniaturization and soft matter, surface tension effects are a major key to the development of soft/fluidic microrobotics. Benefiting from scaling laws, surface tension and capillary effects can enable sensing, actuation, adhesion, confinement, compliance, and other structural and functional properties necessary in micro- and nanosystems. Various applications are under development: microfluidic and lab-on-chip devices, soft gripping and manipulation of particles, colloidal and interfacial assemblies, fluidic/droplet mechatronics. The capillary action is ubiquitous in drops, bubbles and menisci, opening a broad spectrum of technological solutions and scientific investigations. Identified grand challenges to the establishment of fluidic microrobotics include mastering the dynamics of capillary effects, controlling the hysteresis arising from wetting and evaporation, improving the dispensing and handling of tiny droplets, and developing a mechatronic approach for the control and programming of surface tension effects. In this Special Issue of Micromachines, we invite contributions covering all aspects of microscale engineering relying on surface tension. Particularly, we welcome contributions on fundamentals or applications related to:Drop-botics: fluidic or surface tension-based micro/nanorobotics: capillary manipulation, gripping, and actuation, sensing, folding, propulsion and bio-inspired solutions; Control of surface tension effects: surface tension gradients, active surfactants, thermocapillarity, electrowetting, elastocapillarity; Handling of droplets, bubbles and liquid bridges: dispensing, confinement, displacement, stretching, rupture, evaporation; Capillary forces: modelling, measurement, simulation; Interfacial engineering: smart liquids, surface treatments; Interfacial fluidic and capillary assembly of colloids and devices; Biological applications of surface tension, including lab-on-chip and organ-on-chip systems. We expect novel as well as review contributions on all aspects of surface tension-based micro/nanoengineering. In line with Micromachines' policy, we also invite research proposals that introduce ideas for new applications, devices, or technologies.

Keywords

electrodynamic screen --- soft tissue --- microstructure --- mist capillary self-alignment --- droplet --- lab-on-a-chip --- mixing --- nanoprecipitation --- asymmetric surfaces --- gecko setae --- oil-water interface --- non-invasive control --- self-cleaning surface --- corrosive resistance --- micropipette-technique --- hydrophobic --- wettability gradient --- lung-surfactants --- hydrophilic --- dynamic --- vibrations --- superhydrophobic --- microasssembly --- adsorption --- wetting --- photochemical reaction --- contact line oscillation --- 355 nm UV laser --- capillary --- computational fluid dynamics --- bearing --- solutal Marangoni effect --- relaxation oscillations --- superhydrophilic --- microtexture melting --- rigid gas permeable contact lenses --- hydrophilic/superhydrophobic patterned surfaces --- polydimethylsiloxane (PDMS) replication --- microfabrication --- actuation --- droplet transport --- “droplet-interface-bilayers” --- microfluidics --- electrosurgical scalpels --- continuous-flow reactor --- air-water surface --- micromanufacturing --- surface treatment --- liquid bridge --- stereolithography --- super-hydrophobic --- two-phase flow --- hot drop --- durable --- insoluble lipids --- anti-sticking --- smart superhydrophobic surface --- droplet manipulation --- “black lipid films” --- condensation --- pick-and-place --- wettability --- gas-microbubbles --- soft robotics --- capillary pressure --- superomniphobic --- self-lubricating slippery surface --- electrowetting --- soluble surfactant --- anisotropic ratchet conveyor --- Nasturtium leaf --- droplets --- photoresponsible surfactant --- two-photon polymerization --- contact angle --- adhesion --- transport --- pick and place --- surface tension --- oil-microdroplets --- micromanipulation --- laser die transfer --- capillary gripper --- equilibrium

Listing 1 - 5 of 5
Sort by