Listing 1 - 4 of 4 |
Sort by
|
Choose an application
Acide succinique --- Succinic acid --- Biotechnologie --- Biotechnology --- Production biologique --- Biological production --- Escherichia coli --- génomique --- genomics --- Cycle du glyoxylate --- Glyoxylate cycle --- 547.461.4 --- 1,4-dicarboxylic acids. Succinic acid and its derivatives C4H4O2 --- 547.461.4 1,4-dicarboxylic acids. Succinic acid and its derivatives C4H4O2
Choose an application
The crystalline state is the most commonly used essential solid active pharmaceutical ingredient (API). The characterization of pharmaceutical crystals encompasses many scientific disciplines, but the core is crystal structure analysis, which reveals the molecular structure of essential pharmaceutical compounds. Crystal structure analysis provides important structural information related to the API's wide range of physicochemical properties, such as solubility, stability, tablet performance, color, and hygroscopicity. This book entitled “Pharmaceutical Crystals"" focuses on the relationship between crystal structure and physicochemical properties. In particular, the new crystal structure of pharmaceutical compounds involving multi-component crystals, such as co-crystals, salts, and hydrates, and polymorph crystals are reported. Such crystal structures were investigated in the latest studies that combined morphology, spectroscopic, theoretical calculation, and thermal analysis with crystallographic study. This book highlights the importance of crystal structure information in many areas of pharmaceutical science and presents current trends in the structure–property study of pharmaceutical crystals. The Guest Editors of this book hope the readers enjoy a wide variety of recent studies on Pharmaceutical Crystals.
crystal structure analysis --- n/a --- famotidine --- solution crystallization --- salt optimization --- structure determination from powder diffraction data --- Hirshfeld surface analysis --- DFT --- molecular docking study --- melting diagram --- dehydration --- hygroscopicity --- HBV --- Benzodioxole --- pharmaceutical crystals --- 4-b]indol-4-one --- pyrimidin-4(3H)-one --- liquid assisted grinding --- HOMO-LUMO --- dissolution --- cocrystal formation --- Raman spectroscopy --- carbamazepine --- hydrogen bonding --- 3 --- ondansetron --- physicochemical properties --- solubility --- succinic acid --- cocrystal --- adefovir dipivoxil --- hepatitis B --- polymorphs --- hydrogen-bond-acceptance ability --- DFT study --- Nitrofurantoin–4-dimethylaminopyridine (NF-DMAP) salt --- photostability --- on-line monitoring --- 5-dihydro-4H-pyrimido[5 --- Imidazole --- Semicarbazone --- crystal habit --- Crystal structure --- solvent-mediated polymorphic transformation --- ticagrelor --- hydrate --- pharmaceutical cocrystal --- malonic acid --- 1H-indole --- reactivity descriptors --- famoxadone --- crystal structure --- dicarboxylic acid --- hydrogen bond --- saccharin --- Nitrofurantoin-4-dimethylaminopyridine (NF-DMAP) salt
Choose an application
Anaerobic digestion (AD) is one of the oldest biotechnological processes and originally referred to biomass degradation under anoxic conditions in both natural and engineered systems. It has been used for decades to treat various waste streams and to produce methane-rich biogas as an important energy carrier, and it has become a major player in electrical power production. AD is a popular, mature technology, and our knowledge about the influencing process parameters as well as about the diverse microbial communities involved in the process has increased dramatically over the last few decades. To avoid competition with food and feed production, the AD feedstock spectrum has constantly been extended to waste products either rich in recalcitrant lignocellulose or containing inhibitory substances such as ammonia, which requires application of various pre-treatments or specific management of the microbial resources. Extending the definition of AD, it can also convert gases rich in hydrogen and carbon dioxide into methane that can substitute natural gas, which opens new opportunities by a direct link to traditional petrochemistry. Furthermore, AD can be coupled with emerging biotechnological applications, such as microbial electrochemical technologies or the production of medium-chain fatty acids by anaerobic fermentation. Ultimately, because of the wide range of applications, AD is still a very vital field in science. This Special Issue highlights some key topics of this research field.
anaerobic digestion --- solid digestate --- milling process --- sugars recovery --- energy balances --- bioethanol production --- biogas upgrading --- biomethane --- bio-succinic acid --- CO2 utilization --- feasibility assessment --- acetate --- lactate --- inoculum --- food waste --- sewage sludge --- lactic acid bacteria --- cattle manure --- steam explosion --- pre-treatment --- UASB --- co-digestion --- biogas --- high-rate anaerobic digestion --- energy recovery --- granular sludge --- renewable energy --- decentralized wastewater treatment --- two-stage anaerobic digestion --- Anammox --- enzyme application --- rheology of digestate --- methane --- aquaculture --- trout --- sludge --- wastewater --- drum sieve --- microfiltration --- settling --- waste-to-energy --- wet waste --- bioenergy --- techno-economic analysis --- ammonia inhibition --- chicken manure --- dairy cow manure --- high-solids anaerobic digestion --- inoculum adaptation --- volatile fatty acids --- dry batch anaerobic digestion --- percolation --- permeability --- Salmonella spp. --- Escherichia coli O157 --- Listeria monocytogenes --- Enterococcus faecalis --- Clostridium spp. --- digestate --- pathogens --- sustainable farming --- anaerobic digester --- antibiotics removal --- antimicrobial --- chlortetracycline --- Tylosin --- n/a
Choose an application
Anaerobic digestion (AD) is one of the oldest biotechnological processes and originally referred to biomass degradation under anoxic conditions in both natural and engineered systems. It has been used for decades to treat various waste streams and to produce methane-rich biogas as an important energy carrier, and it has become a major player in electrical power production. AD is a popular, mature technology, and our knowledge about the influencing process parameters as well as about the diverse microbial communities involved in the process has increased dramatically over the last few decades. To avoid competition with food and feed production, the AD feedstock spectrum has constantly been extended to waste products either rich in recalcitrant lignocellulose or containing inhibitory substances such as ammonia, which requires application of various pre-treatments or specific management of the microbial resources. Extending the definition of AD, it can also convert gases rich in hydrogen and carbon dioxide into methane that can substitute natural gas, which opens new opportunities by a direct link to traditional petrochemistry. Furthermore, AD can be coupled with emerging biotechnological applications, such as microbial electrochemical technologies or the production of medium-chain fatty acids by anaerobic fermentation. Ultimately, because of the wide range of applications, AD is still a very vital field in science. This Special Issue highlights some key topics of this research field.
Research & information: general --- Biology, life sciences --- anaerobic digestion --- solid digestate --- milling process --- sugars recovery --- energy balances --- bioethanol production --- biogas upgrading --- biomethane --- bio-succinic acid --- CO2 utilization --- feasibility assessment --- acetate --- lactate --- inoculum --- food waste --- sewage sludge --- lactic acid bacteria --- cattle manure --- steam explosion --- pre-treatment --- UASB --- co-digestion --- biogas --- high-rate anaerobic digestion --- energy recovery --- granular sludge --- renewable energy --- decentralized wastewater treatment --- two-stage anaerobic digestion --- Anammox --- enzyme application --- rheology of digestate --- methane --- aquaculture --- trout --- sludge --- wastewater --- drum sieve --- microfiltration --- settling --- waste-to-energy --- wet waste --- bioenergy --- techno-economic analysis --- ammonia inhibition --- chicken manure --- dairy cow manure --- high-solids anaerobic digestion --- inoculum adaptation --- volatile fatty acids --- dry batch anaerobic digestion --- percolation --- permeability --- Salmonella spp. --- Escherichia coli O157 --- Listeria monocytogenes --- Enterococcus faecalis --- Clostridium spp. --- digestate --- pathogens --- sustainable farming --- anaerobic digester --- antibiotics removal --- antimicrobial --- chlortetracycline --- Tylosin
Listing 1 - 4 of 4 |
Sort by
|