Listing 1 - 10 of 31 | << page >> |
Sort by
|
Choose an application
Recent studies have shown that genes from the SDH family (succinate dehydrogenase) present mutations in one quarter of patients with a pheochromocytoma and/or paraganglioma. While malignant pheochromocytoma and paraganglioma are associated with SDHB gene mutations, benign head and neck paragangliomas are linked with changes in the SDHD gene.
The purpose of this disquisition was too look for mutations in both the SDHB and SDHD genes in 36 patients: 10 with a paraganglioma and 26 with a pheochromocytoma. Screening of the genes was carried out by DHPLC. Samples presenting a suspicious profile on DHPLC were sequenced. Four mutations were found of which two in patients with a head and neck paraganglioma, and two in patients with a pheochromocytoma. On the basis of these results, we have been able to male phenotypes-genotypes correlations. De récente études ont montré que des gènes de la famille de SDH (succinate déshydrogénase) sont mutes chez un quart des patients présentant un phéochromocytome et/ou un paragangliome. Alors que les phéochromocytomes et les paragangliomes à caractère malins sont associés à des mutations du gène SDHB, les paragangliomes de la tête et du cou bénins sont dus à des changements dans le gène SDHD.
Le but de ce mémoire était de rechercher des mutations dans les gènes SDHB et SDHD chez 36 patients : 10 présentant un paragangliome et 26 un phéochromocytome. Le criblage de ces gènes a été réalisé par DHPLC. Les échantillons présentant un profil suspect à la DHPLC ont ensuite été séquencés. Quatre mutations ont été trouvées dont deux chez des patients ayant un PGL tête et cou et deux patients présentant un PHEO. Grâce aux résultats obtenus, nous avons pu réaliser des corrélations phénotypes-génotypes.
Pheochromocytoma --- Paraganglioma --- Succinate Dehydrogenase
Choose an application
Paragangliomas and pheochromocytomas are rare neuroendocrine tumors which derived from paraganglions. They have been associated for a long time to mutations in one of the three genes: VHL, RET and NF1. However, recent studies have shown that the SDH family genes (encoding for the subunits of succinate dehydrogenase) were also strongly involved in the pathogenesis.
The purpose of this study was to establish phenotype-genotype correlations in 93 patients recruited between May 2003 and September 2008, affected by pheochromocytomas and head and neck paranglioma in Belgium. Genotype and phenotype analysis were performed in 47 patients with head and neck paragangliomas and 46 adrenal and extra-adrenal pheochromocytomas.
After genetic screening and statistical analysis, our results suggest that some correlations previously described in the literature are not universally found, and on a larger scale, could change the strategy of genetic screening for these tumors. Les paragangliomes et phéochromocytomes sont des tumeurs neuroendocrines rares à l’origine des paraganglions. Ils ont très longtemps été associés à une mutation d’un des trois gènes : VHL, RET et NF1. Cependant, des études récentes ont montré que les gènes de la famille SDH (codant pour les sous-unités de la succinate déshydrogénase) étaient également fortement impliqués dans la pathogénie.
L’objectif de ce mémoire était d’établir des corrélations phénotype-génotype chez 93 patients recrutés entre mai 2003 et septembre 2008, atteints de phéochromocytomes et paragangliomes de la tête et du cou en Belgique. L’analyse génotypique et phénotypique a été réalisée chez 47 sujets atteints de paragangliomes de la tête et du cou et 46 cas de phéochromocytomes surrénaliens et extra-surrénaliens.
Après ciblage génétique et analyses statistiques, nos résultats suggèrent que certaines corrélations décrites auparavant dans la littérature ne sont pas universellement retrouvée, et à plus grande échelle, pourraient modifier la stratégie du screening génétique pour ces tumeurs
Pheochromocytoma --- Paraganglioma --- Succinate Dehydrogenase
Choose an application
Propionibacterium --- Enzymes --- Methane. --- Methane --- Methanogens --- Biodegradation. --- Biodegradation --- organic matter --- Succinate dehydrogenase --- Syntrophobacter wolinii
Choose an application
Over the last decades, natural fibers have received growing attention as alternatives to synthetic materials for the reinforcement of polymeric composites. Their specific properties, low price, health advantages, renewability and recyclability make natural fibers particularly attractive for these purposes. Furthermore, natural fibers have a CO2-neutral life cycle, in contrast to their synthetic counterparts. However, natural fibers are also widely known to possess several drawbacks, such as a hydrophilic nature, low and variable mechanical properties, poor adhesion to polymeric matrices, high susceptibility to moisture absorption and low aging resistance. Therefore, extensive research has been conducted on natural fiber-reinforced composites in the last 20 years. In this context, this book presents several interesting papers concerning the use of natural fibers for the reinforcement of polymer-based composites, with a focus on the evaluation of their mechanical performances, ballistic properties, rheological behavior, thermal insulation response and aging resistance in humid or aggressive environments.
Research & information: general --- flax FRP --- basalt FRP --- glass FRP --- wood beam --- bending --- hybrid FRP --- flax fiber --- nano-clay --- water uptake --- hygrothermal properties --- coaxial electrospinning --- length of straight fluid jet --- spreading angle --- nanoribbons --- linear relationship --- curaua fibers --- graphene oxide coating --- epoxy composites --- ballistic performance --- recycled cotton fibers --- stiffness --- micromechanics --- Young’s modulus --- polymer matrix composites --- flax fibers --- surface treatments --- adhesion --- polymer-matrix composites (PMCs) --- composite laminates --- low-velocity impact --- delamination --- X-ray micro CT --- polypropylene --- basalt fibers --- composite laminate --- flexural --- impact damage --- dog wool fibers --- fillers --- polyurethane --- eco-composites --- renewable resources --- poly(lactic acid) --- poly(butylene succinate) --- plasticizer migration --- diffusion --- natural fibre composites --- mechanical properties --- elastic behaviour --- viscous response --- empty fruit bunch fiber (EFB) --- polybutylene succinate (PBS) --- starch --- glycerol --- characterizations --- biocomposite --- polymer Blends --- Mopa-Mopa resin --- biobased composite --- fique fibers --- wood–plastic --- leather waste --- thermoplastic starch --- mechanical characterization --- thermal characterization --- n/a --- Young's modulus --- wood-plastic
Choose an application
Over the last decades, natural fibers have received growing attention as alternatives to synthetic materials for the reinforcement of polymeric composites. Their specific properties, low price, health advantages, renewability and recyclability make natural fibers particularly attractive for these purposes. Furthermore, natural fibers have a CO2-neutral life cycle, in contrast to their synthetic counterparts. However, natural fibers are also widely known to possess several drawbacks, such as a hydrophilic nature, low and variable mechanical properties, poor adhesion to polymeric matrices, high susceptibility to moisture absorption and low aging resistance. Therefore, extensive research has been conducted on natural fiber-reinforced composites in the last 20 years. In this context, this book presents several interesting papers concerning the use of natural fibers for the reinforcement of polymer-based composites, with a focus on the evaluation of their mechanical performances, ballistic properties, rheological behavior, thermal insulation response and aging resistance in humid or aggressive environments.
flax FRP --- basalt FRP --- glass FRP --- wood beam --- bending --- hybrid FRP --- flax fiber --- nano-clay --- water uptake --- hygrothermal properties --- coaxial electrospinning --- length of straight fluid jet --- spreading angle --- nanoribbons --- linear relationship --- curaua fibers --- graphene oxide coating --- epoxy composites --- ballistic performance --- recycled cotton fibers --- stiffness --- micromechanics --- Young’s modulus --- polymer matrix composites --- flax fibers --- surface treatments --- adhesion --- polymer-matrix composites (PMCs) --- composite laminates --- low-velocity impact --- delamination --- X-ray micro CT --- polypropylene --- basalt fibers --- composite laminate --- flexural --- impact damage --- dog wool fibers --- fillers --- polyurethane --- eco-composites --- renewable resources --- poly(lactic acid) --- poly(butylene succinate) --- plasticizer migration --- diffusion --- natural fibre composites --- mechanical properties --- elastic behaviour --- viscous response --- empty fruit bunch fiber (EFB) --- polybutylene succinate (PBS) --- starch --- glycerol --- characterizations --- biocomposite --- polymer Blends --- Mopa-Mopa resin --- biobased composite --- fique fibers --- wood–plastic --- leather waste --- thermoplastic starch --- mechanical characterization --- thermal characterization --- n/a --- Young's modulus --- wood-plastic
Choose an application
Over the last decades, natural fibers have received growing attention as alternatives to synthetic materials for the reinforcement of polymeric composites. Their specific properties, low price, health advantages, renewability and recyclability make natural fibers particularly attractive for these purposes. Furthermore, natural fibers have a CO2-neutral life cycle, in contrast to their synthetic counterparts. However, natural fibers are also widely known to possess several drawbacks, such as a hydrophilic nature, low and variable mechanical properties, poor adhesion to polymeric matrices, high susceptibility to moisture absorption and low aging resistance. Therefore, extensive research has been conducted on natural fiber-reinforced composites in the last 20 years. In this context, this book presents several interesting papers concerning the use of natural fibers for the reinforcement of polymer-based composites, with a focus on the evaluation of their mechanical performances, ballistic properties, rheological behavior, thermal insulation response and aging resistance in humid or aggressive environments.
Research & information: general --- flax FRP --- basalt FRP --- glass FRP --- wood beam --- bending --- hybrid FRP --- flax fiber --- nano-clay --- water uptake --- hygrothermal properties --- coaxial electrospinning --- length of straight fluid jet --- spreading angle --- nanoribbons --- linear relationship --- curaua fibers --- graphene oxide coating --- epoxy composites --- ballistic performance --- recycled cotton fibers --- stiffness --- micromechanics --- Young's modulus --- polymer matrix composites --- flax fibers --- surface treatments --- adhesion --- polymer-matrix composites (PMCs) --- composite laminates --- low-velocity impact --- delamination --- X-ray micro CT --- polypropylene --- basalt fibers --- composite laminate --- flexural --- impact damage --- dog wool fibers --- fillers --- polyurethane --- eco-composites --- renewable resources --- poly(lactic acid) --- poly(butylene succinate) --- plasticizer migration --- diffusion --- natural fibre composites --- mechanical properties --- elastic behaviour --- viscous response --- empty fruit bunch fiber (EFB) --- polybutylene succinate (PBS) --- starch --- glycerol --- characterizations --- biocomposite --- polymer Blends --- Mopa-Mopa resin --- biobased composite --- fique fibers --- wood-plastic --- leather waste --- thermoplastic starch --- mechanical characterization --- thermal characterization
Choose an application
The chemical industry is essential in the daily human life of modern society; despite the misconception about the real need for chemical production, everyone enjoys the benefit of the chemical progress. However, the chemical industry generates a large variety of products, including (i) basic chemicals, e.g., polymers, petrochemicals, and basic inorganics; (ii) specialty chemicals for crop protection, paints, inks, colorants, textiles, paper, and engineering; and (iii) consumer chemicals, including detergents, soaps, etc. For these reasons, chemists in both academia and industry are challenged with developing green and sustainable chemical production toward the full-recycling of feedstocks and waste. Aiming to improve the intensification of the process, chemists have established chemical reactions based on catalysis, as well as alternative technologies, such as continuous flow. The aim of this book is to cover promising recent research and novel trends in the field of novel catalytic reactions (homogeneous, heterogeneous, and enzymatic, as well as their combinations) in continuous flow conditions. A collection of recent contribution for conversion of starting material originated from petroleum resources or biomass into highly-added value chemicals are reported.
n/a --- dynamic mesh --- catalytic hydrodechlorination --- Pd catalyst --- fuel reactor --- catalysis --- alcohols --- Rhynchophorus ferrugineus --- ketones --- numerical prediction --- heterogeneous catalyst --- 5-hydroxymethylfurfural (HMF) --- CO2 capture --- chemical looping combustion --- SBA-15 --- biodiesel --- ?-valerolactone --- (bio) catalysis --- economizer --- erosion rate --- magnesium --- circulating fluidized bed --- continuous reactor --- erosion evolution --- kinetics --- Meerwein–Ponndorf–Verley reduction --- flow microreactor --- CFD --- micro reactor --- Oppenauer oxidation --- chlorophenols --- succinate --- aldehydes --- multiphase catalysis --- methyl levulinate --- pheromone --- zirconium --- flow chemistry --- continuous flow --- biomass --- glucose --- oxidation --- dialkyl succinates --- tube-in-tube --- aerobic --- chemo-enzymatic catalysis --- homogeneous catalysis --- lipase Cal B --- expiry period --- titanium dioxide --- Meerwein-Ponndorf-Verley reduction
Choose an application
This reprint includes research articles on various applications of electrospun nanofibers. Nanofibers have potential to be used in tissue engineering, energy harvesting, sensors, separators, water filtration, air filtration, and other applications as well. This Special Issue has received 11 interesting research articles, which covers such application areas.
Technology: general issues --- nanofibers --- fibroblast --- cell culture --- cell adhesion --- cell viability --- biobased polyester --- silver nanoclusters --- sericin --- cellulose acetate --- electrospinning --- Antibacterial Nanofibers --- polybutylene succinate --- filter membrane --- electrospun fiber --- graphene oxide --- protein adsorption --- nanofiber --- hollow ball --- alginate --- tissue engineering --- 3D structure --- nanofiber fabric --- protein --- affinity adsorption --- selective separation --- poly(homocysteine thiolactone) --- sensing --- catalysis --- nanonet --- polyacrylonitrile --- surfactant --- meltblown --- nanofiber/nanonet --- hybrid nanofiber --- cytotoxicity --- folic acid --- in vitro study --- drug release --- polyimide --- solid state batteries --- composite polymer electrolyte --- photo polymerization --- fireproof --- cellulose nanofiber --- silver nanoparticle --- orange essential oil --- antibacterial activity --- polymer composites --- nanoparticle --- polymer blends --- medical applications --- n/a
Choose an application
Beauty masks, diapers, wound dressings, wipes, protective clothes and biomedical products: all these high-value and/or large-volume products must be highly compatible with human skin and they should have specific functional properties, such as anti-microbial, anti-inflammatory and anti-oxidant properties. They are currently partially or totally produced using fossil-based sources, with evident issues linked to their end of life, as their waste generates an increasing environmental concern. On the contrary, biopolymers and active biomolecules from biobased sources could be used to produce new materials that are highly compatible with the skin and also biodegradable. The final products can be obtained by exploiting safe and smart nanotechnologies such as the extrusion of bionanocomposites and electrospinning/electrospray, as well as innovative surface modification and control methodologies. For all these reasons, recently, many researchers, such as those involved in the European POLYBIOSKIN project activities, have been working in the field of biomaterials with anti-microbial, anti-inflammatory and anti-oxidant properties, as well as biobased materials which are renewable and biodegradable. The present book gathered research and review papers dedicated to materials and technologies for high-performance products where the attention paid to health and environmental impact is efficiently integrated, considering both the skin-compatibility of the selected materials and their source/end of life.
Research & information: general --- pullulan --- biopolymers --- exopolysaccharides --- biodegradation --- biocompatibility --- poly(lactic acid) --- poly(butylene succinate) --- chitin nanofibrils --- starch --- skin compatibility --- anti-microbial --- poly(hydroxyalkanoate) --- biopolyesters --- beauty masks --- releasing --- skin compatible --- polyhydroxyalkanotes --- sugarcane molasses --- antibacterial materials --- essential oils --- coating --- poly(lactide) --- chitin–lignin nanocomplex --- grafting from --- lactide oligomers --- platelet-rich fibrin --- wound healing --- skin wounds --- wound dressing --- hyperspectral imaging --- principal component analysis --- spectroscopy --- chitosan --- partial least squares regression --- nir --- actives substances --- cn-nl/ga --- skin --- antifouling --- antimicrobial --- antiviral --- electrospinning --- breast implant --- ear prosthesis --- biomedical device --- chronic wound --- biopolymer --- bio-based --- surface modification --- nanolignin --- electrospray --- anti-inflammatory --- blends --- PLA --- PHBV --- nanocomposite --- tissue engineering --- biodegradable --- nanofiber --- n/a --- chitin-lignin nanocomplex
Choose an application
Beauty masks, diapers, wound dressings, wipes, protective clothes and biomedical products: all these high-value and/or large-volume products must be highly compatible with human skin and they should have specific functional properties, such as anti-microbial, anti-inflammatory and anti-oxidant properties. They are currently partially or totally produced using fossil-based sources, with evident issues linked to their end of life, as their waste generates an increasing environmental concern. On the contrary, biopolymers and active biomolecules from biobased sources could be used to produce new materials that are highly compatible with the skin and also biodegradable. The final products can be obtained by exploiting safe and smart nanotechnologies such as the extrusion of bionanocomposites and electrospinning/electrospray, as well as innovative surface modification and control methodologies. For all these reasons, recently, many researchers, such as those involved in the European POLYBIOSKIN project activities, have been working in the field of biomaterials with anti-microbial, anti-inflammatory and anti-oxidant properties, as well as biobased materials which are renewable and biodegradable. The present book gathered research and review papers dedicated to materials and technologies for high-performance products where the attention paid to health and environmental impact is efficiently integrated, considering both the skin-compatibility of the selected materials and their source/end of life.
pullulan --- biopolymers --- exopolysaccharides --- biodegradation --- biocompatibility --- poly(lactic acid) --- poly(butylene succinate) --- chitin nanofibrils --- starch --- skin compatibility --- anti-microbial --- poly(hydroxyalkanoate) --- biopolyesters --- beauty masks --- releasing --- skin compatible --- polyhydroxyalkanotes --- sugarcane molasses --- antibacterial materials --- essential oils --- coating --- poly(lactide) --- chitin–lignin nanocomplex --- grafting from --- lactide oligomers --- platelet-rich fibrin --- wound healing --- skin wounds --- wound dressing --- hyperspectral imaging --- principal component analysis --- spectroscopy --- chitosan --- partial least squares regression --- nir --- actives substances --- cn-nl/ga --- skin --- antifouling --- antimicrobial --- antiviral --- electrospinning --- breast implant --- ear prosthesis --- biomedical device --- chronic wound --- biopolymer --- bio-based --- surface modification --- nanolignin --- electrospray --- anti-inflammatory --- blends --- PLA --- PHBV --- nanocomposite --- tissue engineering --- biodegradable --- nanofiber --- n/a --- chitin-lignin nanocomplex
Listing 1 - 10 of 31 | << page >> |
Sort by
|